اثر دمای بارریزی بر گرافیت‌زایی مقاطع تولید شده به روش منیزیم در راهگاه توپر

نوع مقاله: مقاله کامل علمی پژوهشی

نویسندگان

1 دانشکده مهندسی مواد، دانشگاه علم و صنعت ایران

2 ریخته گری، دانشکده مهندسی مواد، دانشگاه علم وصنعت ایران

چکیده

در این تحقیق شرایط گرافیت زایی در مقاطع تولید شده به روش تلفیقی منیزیم در راهگاه-توپر مورد بررسی قرار گرفت. مقاطع با مدل پلی استایرین تهیه و ریخته­گری با سه قطر متفاوت انجام شد. در این مقاله فقط مشخصات ریز ساختاری میله­ها‌ی با قطر 10 و ارتفاع 200 میلی‌متر ریخته شده در دو دمای بارریزی1410 و 1440 درجه سانتی‌گراد و مقدار 1 درصد ماده کروی­کننده (فرو سیلیسیم منیزیم)، مورد بررسی قرار گرفته است. بدین منظور میله‌های با قطر 10 میلی‌متر از دو مقطع، در قسمت میانی و انتهایی (دور‌ترین فاصله از راهباره) بریده شده و سپس این مقاطع با میکروسکپ نوری مورد بررسی قرار گرفت. نتایج نشان می‌دهد که دمای بارریزی و حرکت سیال بر مورفولوژی و همچنین نحوه توزیع، شکل و اندازه گرافیت تاثیر بسزایی دارد، بطوری­که ریزساختار میله‌های 10 میلی‌متری ریخته شده در دمای 1410 درجه سانتی‌گراد، در ناحیه مرکزی مقطع غیر کروی بوده و متفاوت از نواحی دیگر است. اما در دمای 1440 درجه سانتی‌گراد گرافیت در کل مقطع، از مرکز تا لبه مقطع، یکنواخت و کروی است. تعداد گرافیت‌های کروی ( بالاتر از 700 عدد در واحد سطح) در میله‌های ریخته شده در هر دو دما و هم‌چنین بالاتر از 80 در صد گرافیت کروی در هر دو حالت از نکات قابل گزارش محسوب می‌شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Pouring Temperature on Graphitization of Cast Bars Produced by in-Mold Lost Foam Process

نویسندگان [English]

  • Mohsen Mahdifar 1
  • Mehdi Divandari 2
1 Iran University of Science and Technology
2 Asso Prof. School of Materials Eng., Iran University of Science and Technology (IUST of Iran)
چکیده [English]

In this study the graphitization characteristics were studied in the test bars produced by the in-mold lost foam (IMLF) process. Polystyrene patterns were prepared, and the test bars were produced in three different diameters. In this paper, only the microstructure of the test bars, having 10 mm diameter and 200 mm height, cast at two temperatures of 1410 and 1440 °C, and 1 wt% of spheroidizing material (FeSiMg), have been investigated. For this purpose, 10 mm bars were cut from two sections, the middle and the end part (the furthest distance from the gate) and then, these sections were examined using optical microscope. The results show that, the melt temperature and fluid flow affect the graphite morphology as well as the distribution, shape, size and type of graphite. In the central part of the test bar, cast at 1410 °C, non-spheroidal graphite is formed which are different from other areas, but at 1440 °C, the graphite in the whole section is uniform and spherical, from the center to edge. The high nodule count (above 700 pcs. per unit surface) and above 80 percent nodularity, in both cases, are worth mentioning. 

کلیدواژه‌ها [English]

  • Nodular graphite cast iron
  • In-mold lost foam process
  • Pouring Temperature
  • Graphite distribution
  • Polystyrene foam

[1]       جافریان، ی.، دوامی، پ.، روشی نو در تولید چدن با گرافیت کروی "افزودن منیزیم در راهگاه"، ریخته‌گری، 1364، 6(3) 117-138.

[2]       Kaczorowski R., Just P., Pacyniak T., Ductile cast iron obtain by lost foam process and in-mold method, Archives of Metallurgy and Materials, 2013, 58(3) 823-826.

[3]       جافریان، ی.، ورهرام ن.، دوامی، پ.، نگرشی نو بر فرآیند افزودن منیزیم در راهگاه، سمینار سالانه جامعه ریخته‌گران ایران، مرداد ماه 1370.

[4]       Pietrowski S., Control of cast iron and casts manufacturing by In-mold method, Archives of Foundry Engineering, 2009, 9(3) 133-142.

[5]       Pacyniak T., Kaczorowski R., Ductile cast iron obtaining by In-mold method with use of lost foam process, Archives of Foundry Engineering, 2010, 10(1) 101-104.

[6]       Just P., Kaczorowski R., Pacyniak T., Optimization of master alloy amount and gating system design for ductile cast iron obtain in lost foam process, Archives of Foundry Engineering, 2013, 13(3) 43-46.

[7]       McCaulay J. L., Production of nodular-graphite iron castings by the in-mold process, Foundry Trade Journal, 1971, 130(2836) 327-32.

[8]       Shroyer H.F., Cavityless Casting Mold and Method of Making Same, Patent U.S., 1958, 2, 830, 343.

[9]       Shivkumar S., Wang L., Apelian D., The lost-foam casting of aluminum alloy components, Journal of Metals, 1990, 42(11) 38-44.

[10]    Ho S., Hibbard G.D., Ravindran C., Production of magnesium thin-wall cellular castings through lost foam casting, Transactions of the American Foundrymen's Society. 2009, 117-857.

[11]    Kumar P., Kumar S., Shan H.S., Comparative study of some refractory filler materials with zircon flour in evaporative pattern casting process, Transactions of the American Foundry Society. 2006, 114, 987-1000.

[12]    Duca A., Flemings M.C., Taylor H.F., Art Casting, Massachusetts Institute of Technology, Cambridge, MA, 1963.

[13]    Lessiter M.J., A look back at the 20th century, Lost foam casting, Modern Casting, 2000, 90(11) 54-65.

[14]    Bates C.E., Griffin J., Littleton H., Expendable Pattern Casting-Process Manual, Vol. 1, AFS Publication, 1994, 1.

[15]    Hejazi M., Divandari M., Taghaddos E., Effect of copper insert on the microstructure of gray iron produced via lost foam casting, Materials and Design, 2009, 30(4) 1085-1092.

[16]    Divandari M., Golpayegani A.R.V., Study of Al/Cu rich phases formed in A356 alloy by inserting Cu wire in pattern in LFC process, Materials and Design, 2009, 30(8) 3279-3285.

[17]    Emami S.M., Divandari M., Hajjari E., Arabi H., Comparison between conventional and lost foam compound casting of Al/Mg light metals, International Journal of Cast Metals Research, 2013, 26(1) 43-50.

[18]    Pakzaman H.R., Divandari M., Khavandi A.R., Effect of nickel coating on steel wire reinforcement on mechanical properties of aluminum matrix composites produced via lost foam casting, Proceedings of Iran International Aluminum Conference (IIAC 2012) Arak, Iran 2012, 1-7.

[19]    Pakzaman H.R., Khavandi A.R., Divandari M., A study on aluminum matrix composite reinforced with a two-dimensional network of interconnected steel wires fabricated by lost foam casting, New and Advanced Material International Congress, Islamic Azad University, Majlesi Branch, 2012.

[20]    Kumar S., Kumar P., Shan H.S., Parametric optimization of surface roughness castings produced by Evaporative Pattern Casting process, Materials Letters, 2006, 60(25) 3048-3053.

[21]    Chakherlou T.N., Mahdinia Y.V., Akbari A., Influence of lustrous carbon defects on the fatigue life of ductile iron castings using lost foam process. Materials and Design, 2011, 32(1) 162-169.

[22]    Xiao B., Fan Z., Microstructure and mechanical properties of ductile cast iron in lost foam casting with vibration, Journal of Iron and Steel Research International, 2014, 21(11) 1049-1054.

[23]    Barone M.R., Caulk D.A., Analysis of mold filling in lost foam casting of aluminum: Part I Method, International Journal of Metalcasting. 2008, 2(3) 29-45.

[24]    Monroe R.W., Expendable Pattern Casting, AFS Inc., USA, 1992.

[25]    Pacyniak T., Effect of foamed pattern density on the lost foam process, Archives of Foundry Engineering, 2007, 7(3) 231-236.

[26]    Just P., Pacyniak T., Influence analysis foamed polystyrene model on casting defects as well as microstructure ductile cast iron from Lost Foam process with In-mold method, Archives of Foundry Engineering, 2011,11(3) 155-158.

[27]    Just P., Pacyniak T., The influence of the shape of the reaction chamber on spheroidisation of cast iron produced in the lost foam casting process with use of the In-mold method, Archives of Foundry Engineering, 2012, 12(2) 175-178.

[28]    Mirbagheri S.H. M., Silk J.R., Davami P., Modelling of foam degradation in lost foam casting process, Journal of Materials Science, 2004, 39(14) 4593-603.

[29]    Khodai M., Mirbagheri S.M.H., Behavior of generated gas in lost foam casting, World Academy of Science, Engineering and Technology, 2011, 5 431-435.

[30]    Walling R.P., Dantzing J.A., Mechanisms of molds filling in the EPC process, Transactions of the American Foundrymen's Society, 1994, 102, 849-854.

[31]    Shivkumar S., Modelling of temperature losses in liquid metal during casting formation in expendable pattern casting process, Materials Science and Technology, 1994, 10(11) 986-992.

[32]    Kumar S., Kumar P., Shan H.S., Effect of evaporative pattern casting process parameters on the surface roughness of Al–7% Si alloy castings, Journal of Materials Processing Technology, 2007, 182(1) 615-623.

[33]    Pan E. N., Sheu G. L., The filling phenomena of lost foam cast irons and aluminum alloys, Transaction of the American Foundry, 2003, 1255-1263.

[34]    Liu Y., Bakhtiyarov S.I., Overfelt R.A., Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, Journal of Materials Science, 2002, 37(14) 2997-3003.

[35]    مهدی‌فر م.، دیواندری م.، بررسی مورفولوژی گرافیت در مقاطع تولید شده با فرآیند منیزیم در راهگاه توپر، ششمین کنفرانس بین‌المللی مهندسی مواد و متالورژی و یازدهمین کنفرانس مشترک انجمن مهندسی متالورژی و مواد ایران و انجمن علمی ریخته‌گری ایران. تهران – ایران، 6 و 7 آبان ماه 1396.

[36]    رشادی ا.، دیواندری م.، و بوترابی م، بررسی شرایط حلالیت ماده کروی‌کننده در مذاب و تاثیر آن بر ساختار و خواص قطعات چدن نشکن تولید شده به روش در قالب-توپر، پایان‌نامه کارشناسی ارشد؛ دانشگاه علم و صنعت ایران؛ 1387.

[37]    بشیر عجمی ر.، دیواندری م.، عربی ح.، بررسی تاثیر مدل فومی بر روی مورفولوژی گرافیت در صفحه‌های ریخته شده به روش منیزیم در راهگاه توپر، پنجمین همایش مشترک انجمن مهندسین متالورژی و جامعه علمی ریخته‌گری ایران، 1390.

[38]    Castro M., Herrera-Trejo M., Alvarado-Reyna J. L., Martinez-Tello C.L., Mendez-Nonell M., Characterization of graphite form in nodular graphite cast iron, International Journal of Cast Metals Research, 2003, 16(1-3) 83-86.

[39]    Ruxanda R., Stefanescu D.M., Graphite shape characterization in cast iron—from visual estimation to fractal dimension, International Journal of Cast Metals Research, 2002, 14(4) 207-216.

[40]    Vasko A., Vasko M., Correlation between shape factor and mechanical properties of graphitic cast irons, Production Engineering Archives, 2016, 11(2) 11-14.

[41]    Imasogie B. I. and Wendt U., Characterization of graphite particle shape in spheroidal graphite iron using a computer- based image analyzer, Journal of Minerals & Materials Characterization & Engineering, 2004, 3(1) 1-12.

[42]    Dogan O.N., Schrems K.K., Hawk J.A., Microstructure of Thin-Wall Ductile Iron Casting, U.S. Department of Energy, Albany Research Center, Albany, Oregon, 97321, 2003.

[43]    Ruxanda R.E., Stefanescu D.M., Piwonka T.S., Microstructure characterization of ductile thin wall iron casting, Transactions American Foundrymens Society, 2002, 2, 1131-1148.

[44]    Metzloff K.E., Loper J.C.R., Effect of nodularity, heat treatment and copper on the elastic modulus of ductile and compacted graphite irons, In Transactions of the American Foundry Society and the One Hundred Fifth Annual Castings Congress, 2001, 1-16.

[45]    Charoenvilaisiri S., Stefanescu D.M., Ruxanda R., Piwonka T.S., Thin wall compacted graphite iron castings, Transactions American Foundrymens Society, 2002, 2, 1113-1130.

[46]    Gurdogan O., Huang H., Akay H. U., Fincher W., Mold-filling analysis for ductile iron lost foam castings, Transactions of the American Foundrymen's Society, 1996, 104, 451-459.‏‏

[47]    Maruyama T., Gotoh N., Nakagawa T., Kobayashi T., Temperature measurement in thermal decomposition gas gap on evaporative pattern casting of cast iron, Transactions of the American Foundrymen's Society, 2008, 116, 933.

[48]    Varahraam N., Ohide T., Variation of residual magnesium and preheating phenomena associated with nodularising alloys employed in the in-mold process, Cast Metals, 1989, 2(1) 39-45.

[49]    Iafari H., Idris MH., Ourdjini A., Karirnian M., Payganeh G., Influence of gating system, sand grain size, and mould coating on microstructure and mechanical properties of thin-wall ductile iron, Journal of Iron and Steel Research, International, 2010, 17(12) 38-45.

[50]    پورآرین ا.، دیواندری  م.، بررسی تاثیر مقدار ماده کروی‌کننده بر مورفولوژی گرافیت در فرآیند ریخته‌گری منیزیم در راهگاه توپر، ریخته‌گری، 1390، 30 (97) 40-50.