An Investigation on the Effect of Mn on the Castability of Hypoeutectic Al-2Ni-xMn Alloys

Document Type : Original Research Article

Authors

1 M.Sc., Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran.‎

2 Assistant Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, IRAN

3 Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, IRAN

10.22034/frj.2018.112623.1017

Abstract

The effect of Mn addition (2 and 4 wt%) on the microstructure and castability of hypoeutectic Al-2Ni alloy was investigated. According to the results, Mn promotes the formation of Mn(Ni)-rich intermetallics in the microstructure. In the case of Al-2Ni-2Mn alloy the intermetallic compounds are interdendritic type whilst in Al-2Ni-4Mn alloy in addition to interdendritic intermetallics, the large and primary Mn-rich compounds with platelets, polyhedral and dendritic morphologies are present. The fluidity results show that the addition of 2 and 4 wt% Mn enhances the mushy solidification of Al-2Ni alloy leading to a fluidity reduction of 7 and 30%, respectively. Based on the microstructural observations and thermal analysis results, this reduction can be attributed to the formation of primary Mn-rich compounds in the molten alloy. Manganese addition, also, exerts negative impact on the hot tearing resistance of Al-2Ni alloy. The hot tearing susceptibility index (HTS) of Al-2Ni-4Mn alloy is 5 and 12 times higher when compared to those of Al-2Ni-2Mn and Al-2Ni alloys, respectively. SEM investigation of hot teared microcracks and the presence of free dendrites and primary Mn-rich compounds on the fractured surfaces imply on the critical role of primary compounds on the formation of hot tear microcracks.

Keywords

Main Subjects


[1] Huang K., Precipitation strengthening in Al-Ni-Mn alloys, PhD Thesis, Worcester Polytechnic Institute, 2015.
[2] Mondolfo L.F., Aluminum alloys: structure and properties, Butterworth and Co publisher Ltd., London, 1976.
[3] Fan Y., Huang K., Makhlouf M.M., Precipitation strengthening in Al-Ni-Mn alloys, Metallurgical and Materials Transactions A, 2015, 46A, (12) 5830-5841.
[4] Shi D., Wen B., Melnik R., Yao S., and Li, T., First-principles studies of Al–Ni intermetallic compounds, Journal of Solid State Chemistry, 2009, 182, (10) 2664-2669.
[5] Yu W., Hao Q., Fan L., Li J., Eutectic solidification microstructure of an Al-4Ni-2Mn alloy, Journal of Alloys and Compounds, 2016, 688, 798-803.
[6] Nam S.W., Lee D.H., The effect of Mn on the mechanical behavior of Al alloys, Metals and Materials International, 2000, 6, (1) 13-16.
[7] Rana R.S., Purohit R., Das S., Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites, International Journal of Scientific and Research Publications, 2012, 2, (6) 1-7.
[8] Lin J.C., Zolotorevsky V.S., Glazoff M.V., Murtha S.J., and Belov, N.A., Al-Ni-Mn casting alloy for automotive and aerospace structural components, U.S. Patent No: 6, 783, 730, 2014.
[9] تقی‌آبادی ر، امامی م.، متالورژی ریخته‌گری تحت فشار آلومینیم، سازمان انتشارات جهاد دانشگاهی، واحد قزوین، 1395.
[10] Di Sabatino M., Arnberg L., A review on the fluidity of Al based alloys, Metallurgical Science and Technology, 2004, 22, (1) 9-15.
[11] Li S., Sadayappan K., Apelian D., Characterization of hot tearing in Al cast alloys: methodology and procedures, International Journal of Cast Metals Research, 2011, 24, (2) 88-95.
[12] Pumphrey W.I., A consideration of the nature of brittleness at temperatures above the solidus in castings and welds in aluminium alloys, Journal of the Institute of Metals, 1948, 75, 235-256.
[13] Cao G.P., Kou S.D., Hot cracking of binary Mg–Al alloy castings, Materials Science and Engineering: A, 2006, 417A, (1) 230-238.
[14] Lin S., A study of hot tearing in wrought aluminium alloys, PhD Thesis, Université du Québec à Chicoutimi, 1999.
[15] یاوری ف.، شبستری، س.، بررسی تاثیر سرعت سرد شدن بر رفتار انجمادی آلیاژ منیزیم AZ91 به روش آنالیز حرارتی، ریخته‌گری، 1395، 35، (113) 5-12.
[16] Grushko B., Pavlyuchkov D., Mi S.B., Balanetsky S., Ternary phases forming adjacent to Al3Mn, Al4Mn in AlMnTM (TM= Fe, Co, Ni, Cu, Zn, Pd), Journal of Alloys and Compounds, 2016, 677, 148-162.
[17] Balanetsky S., Meisterernst, G., Feuerbacher M., The Al-rich region of the Al–Mn–Ni alloy system. Part I: Ternary phases at 750–950°C, Journal of Alloys and Compounds, 2011, 509, (9) 3787-3794.
[18] Balanetsky S., Meisterernst G., Grushko B., Feuerbacher M., The Al-rich region of the Al–Mn–Ni alloy system. Part II. Phase equilibria at 620–1000°C, Journal of Alloys and Compounds, 2011, 509, (9) 3795-3805.
[19] Taghaddos E., Hejazi M.M., Taghiabadi R., Shabestari S.G., Effect of iron-intermetallics on the fluidity of 413 aluminum alloy, Journal of Alloys and Compounds, 2009, 468, (1) 539-545.
[20] Nanda I.P., Suharno B., Correlation between morphological and fraction size of intermetallics on fluidity of Al-11% Si alloy with Fe addition, Journal of Teknik Industri, 2010, 11, (2) 112-116.