اثر مقدار منیزیم بر ریزساختار و سختی مدرج کامپوزیت‌های ‏Al-20Si-XMg‏ ریخته‌گری شده ‏ با روش گریز از مرکز

نوع مقاله: مقاله کامل علمی پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران

2 دانشیار، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران.

3 کارشناس ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی سهند، تبریز، ایران

10.22034/frj.2019.186486.1084

چکیده

برای ارزیابی تاثیر مقدار منیزیم بر ایجاد ریزساختار و سختی مدرج در کامپوزیت‌های Al-Si-Mg در روش ریخته‌گری گریز از مرکز، سه استوانه با ترکیب شیمیایی Al-20Si-XMg (X= 6, 9, 12) (بر حسب درصد وزنی) ریخته‌گری شد. سپس ریزساختار و سختی مقاطع شعاعی مختلف آنها به ترتیب با استفاده از میکروسکوپ های نوری و SEM مجهز به سیستم میکرو آنالیز (EDS) و سختی سنجی برینل مورد بررسی قرار گرفت. برای تحلیل نتایج از نرم افزارهای Thermo-Calc و JMat Pro به ترتیب برای رسم نمودارهای فازی تعادلی آلیاژها، کسر جرمی و چگالی فازهای درجای تشکیل شده حین انجماد استفاده شد. نتایج نشان می‌دهند که با افزایش مقدار منیزیم آلیاژ، علیرغم اینکه ذرات Mg2Si اولیه درشت تری در ریزساختار شکل می‌گیرد اما بواسطه چگالی پایین این ذرات، جدایش مرکز گرای آنها به همراه ذرات Si اولیه طبق قانون استوکس در مکانیک سیالات افزایش می‌یابد. به گونه ای که با افزایش مقدار Mg آلیاژها از 6% به 9% و سپس 12% وزنی، کسر حجمی ذرات Mg2Si در لایه داخلی استوانه‌های ریختگی از مقادیر کمتر از 7 % به حدود 28 % و اندازه متوسط آنها از مقادیر کمتر از 54 میکرون به حدود 166 میکرون افزایش می‌یابد. اما به خاطر نرم بودن ذرات Mg2Si نسبت به Si، با افزایش کسر حجمی ذرات Mg2Siدر لایه های داخلی استوانه‌ها سختی این لایه‌ها به ترتیب از 86 به 81 و سپس 78 برینل کاهش می یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Magnesium Content on Functionally Graded Microstructure and ‎Hardness of ‎Centrifugally cast Al-20Si-XMg Composites

نویسندگان [English]

  • Ebrahim Aghazadeh 1
  • Ahad Samadi 2
  • Sayfolah Aghazadeh 3
1 MSc student‎, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
2 Associate Professor‎, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran.
3 M.Sc., Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

To evaluate the effect of magnesium content on the microstructure and hardness of the Al-Si-Mg composites in the centrifugal casting method, three cylinders with the chemical composition of Al-20Si-XMg (X = 6, 9, 12) (as weight percent) were cast. Then the microstructure and hardness of the different radial sections were studied by optical microscope, SEM equipped with a micro-analysis system (EDS), and standard brinell hardness testing method, respectively. The phase diagram of Al-20Si-XMg system was plotted as a function of Mg% using Thermo-Calc software. Also JMat Pro software was employed to plot the variation of the mass fraction and density of the in situ formed phases during the solidification of the alloys. The results show clearly that while the coarse Mg2Si particles are formed in high Mg content alloys; however, these particles along with the primary Si particles, both, due to the low density, based on Stokes' law in fluid mechanics, are centripetally segregated towards the inner layers of the cylinders. In addition, by increasing the Mg content of the alloys from 6% to 9% then 12% the volume fraction and average size of the Mg2Si particles in inner layer of the cylinders, both, increase respectively from less than 7% to about 28% and from less than 54 microns to about 166 microns. But, since Mg2Si particles are softer than Si particles, by increasing the volume fraction of the Mg2Si particles, the hardness of the inner layers of the cylinders reduces from 86 to 81 and then 78 brinell.

کلیدواژه‌ها [English]

  • centrifugal casting
  • functionally graded composites
  • Al-Si-Mg alloys
  • particle segregation
  • hybrid microstructure

[1] Zamani R., Mirzadeh H., Emamy M., Mechanical properties of a hot deformed Al-Mg2Si in-situ composite, Materials Science and Engineering: A, 2018, 726, 10-17.

[2] Pramod S.L., Bakshi S.R., Murty B.S., Aluminum- based cast in situ composites: A review, Journal of Materials Engineering and Performance, 2015, 24, 2185-2207.

[3] Emamy M., Khorshidi R., Raouf A.H., The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite, Materials Science and Engineering: A, 2011, 528, 4337-4342.

[4] Rajan T.P.D., Pai B.C., Processing of functionally graded aluminum matrix composite by centrifugal casting technique, Materials Science Forum, 2011, 690, 157-161.

[5] Kwon H., Bradbury C.R., Leparoux M., Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite, Advanced Engineering Materials, 2011, 13, 325-329.

[6] Udupa G., Rbo S. Sh., Gangadharan K.V., Functionally graded composite materials: An overview, Procedia Materials Science, 2014, 5, 1291-1299.

[7] Radhika N., Raghu R., Development of functionally graded aluminum composites using centrifugal casting and influence of reinforcements on mechanical and wear properties, Trans. Non. Met. Soc. China, 2016, 26, 905-916.

[8] Arsha A.G., Jayakumar E., Rajan T.P.D., Antony V., Pai B.C., Design and fabrication of functionally graded in-situ aluminum composites for automotive pistons, Materials and Design, 2015, 88, 1201-1209.

[9] Karun A.S., Rajan T.P.D., Pillai U.T.S., Pai B.C., Rajeev V.R., Farook A., Enhancement in tribological behavior of functionally graded SiC reinforced aluminum composite by centrifugal casting, Journal of Composite Materials, 2015, 50, 2255-2269.

[10] Krisnan P.M., Hari S., Jayakumari E., Rajan T.P.D., Prabhu K.N., Centrifugal casting and characterization of primary silicon and Mg2Si dispersed aluminum functionally graded materials, Materials Science Forum, 2015, 830-831, 11-14.

[11] Radhika N., Raghu R., Effect of Centrifugal speed in abrasive wear behavior of Al-Si5Cu3/SiC functionally graded composite fabricated by centrifugal casting, Trans. Indian Inst. Met., 2015, 71(3), 715-726.

[12] Ogawa T., Watanabe Y., Sato H., Kim I., Fukui Y., Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method, Composites: Part A, 2006, 37, 2194–2200.

[13] Thirtha Prasad H.P., Chikkanna N., Experimental investigation on the effect of particle loading on microstructural, mechanical and fractural properties of Al/Al2O3 functionally graded materials, International Journal of Advanced Engineering Technology, II, 2011, 161-166.

[14] Wang K., Zhang Z.M., Yu T., Zhu Z.Z., The transfer behavior in centrifugal casting of SiCp/Al composites, Journal of materials Processing Technology, 2017, 242, 60-67.

[15] Jayakumar E., Jacob J.C., Rajan T.P. D., Joseph M.A., Pai B.C., Processing and characterization of functionally graded aluminum (A319)-SiCp Metallic composites by centrifugal casting technique, Metallurgical and Materials Transactions A, 2016, 47, 4306-4315.

[16] Valhinho A., Botas J.D., Ariza E., Gomes J.R., L.A. Rocha., Tribo corrosion studies in centrifugally cast Al-matrix SiC-reinforced functionally graded composites, Materials Science Forum, 2004, 455-456, 871-875.

[17] Rajan T.P.D., Pillai R.M., Pai B.C., Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites, Materials Characterization, 2010, 61, 923-928.

[18] Radhika N., Mechanical properties and abrasive wear behavior of functionally graded Al-Si12Cu/Al2O3 metal matrix composite, Trans. Indian Inst. Met., IIM 2016. , DOI 10.1007/s12666-016-0870-3.

[19] آقازاده ا.، صمدی ا.، آقازاده س.، ایجاد ریزساختار هیبریدی مدرج با ریخته­گری گریز از مرکز یک آلیاژ هایپریوتکتیک Al-Mg2Si، پژوهش‌نامه ریخته­گری، 1397، 2(2) 18-9.

[20] El-Hadad Sh., Satoa H., Watanabe Y. Wear of Al/Al3Zr functionally graded materials fabricated by centrifugal solid-particle method, Journal of Materials Processing Technology, 2010, 210, 2245-2251.

[21] Matsuda K., Watanabe Y., Fukui Y., Particle size distributions in in situ Al–Al3Ni FGMs fabricated by centrifugal in situ method, Ceramic Trans, 2001, 114, 1–8.

[22] El-Hadad Sh., Sato H., Wantanab Y., Fabrication of Al-Al3Ti/Ti3Al functionally graded materials under a centrifugal force, Materials, 2010, 9, 4639-4656.

[23] آقازاده س.، صمدی ا.، آقازاده ا.، تأثیر مقدار سیلیسیم بر درجه‌بندی ریزساختار آلیاژهای Al-Si ریخته شده به روش گریز از مرکز، پژوهش‌نامه ریخته‌گری، 1396، 1(2) 97-89.

[24] Wang Q., Wei Y., Chen W., Zhu Y., Ma C., Ding W., In situ surface composites of (Mg2Si+Si)/ZA27 fabricated by centrifugal casting, Materials Letters, 2003, 57, 3851–3858.

[25] Samadi A., Shahbazkhani H.R., Effect of pouring temperature and casting thickness on distribution gradient of in situ formed Al2Cu particles during centrifugal casting of hypereutectic Al–Cu alloy, International Journal of Cast Metals Research, 2014, 27, 129-134.

[26] شهبازخانی ح.ر.، صمدی ا.، تأثیر دمای فوق گداز و ضخامت نمونه بر رفتار و ریزساختار ‌درجه‌بندی شده آلیاژ هایپریوتکتیکAl-Cu  ریخته‌گری شده به روش گریز از مرکز، مجله ریخته‌گری، 1388، 93، 27-21.

[27] صمدی ا.، غایب لو م.، تأثیر افزودن جوانه‌زای Al-5Ti-B بر درجه‌بندی ریزساختار استوانه ریخته شده از کامپوزیت Al-13.8 wt.% Mg2Si به روش ریخته­گری گریز از مرکز، مواد پیشرفته در مهندسی مواد، 1394، 34(2) 59-49.

[28] Zhang J., Fana Z., Wang Y., Zhoub B., Hypereutectic aluminum alloy tubes with graded distribution of Mg2Si particles prepared by centrifugal casting, Materials and Design, 2000, 21, 149-153.

[29] Qudong W., Yongjun C., Wenzhou C., Yinhong W., Chunquan Z., Wenjiang D., Centrifugally cast Zn–27Al–xMg–ySi alloys and their in situ (Mg2Si + Si)/ZA27 composite, Materials Science and Engineering A, 2005, 394, 425–434.

[30] Raghunandan S., Hyder J.A., Rajan T.P.D., Processing of primary silicon and Mg2Si reinforced hybrid functionally graded aluminum composites by centrifugal casting, Journal of Materials Science Forum, 2012, 710, 395-400.

[31] Yan-bo Z., Chang-ming L., Kai W., Mao-hua Z., Yong X., Characteristics of two Al based functionally gradient reinforced by primary Si particle and Si/in situ Mg2Si particles in centrifugal casting, Transactions of Nonferrous Metals Society of China, 2010, 20, 361-370.

[32] Zhang J., Fan Z., Wang Y.Q., Zhou B.L., Microstructure and mechanical properties of in-situ Al-Mg2Si composites, Materials Science and Technology, 2000, 16, 913-918.

[33] Warmuzek M., Aluminium-Silicon Casting Alloys, ASM Handbooks, 2000, 1-9.

[34] Li C., Wu Y.Y., Li H., Liu X.F., Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys, Acta Materialia, 2011, 59, 1058–1067.

[35] Qin Q.D., Zhao Y.G., Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification, Journal of Alloys and Compounds, 2008, 462, 462: L28-L31.