تعیین فشار بحرانی و فشار ممانعت کننده برای تبخیر منگنز در حین فرایند ذوب القایی آلیاژهای منگنز- نیکل

نوع مقاله: مقاله کامل علمی پژوهشی

نویسندگان

1 محقق، مهندسی مواد، دانشگاه صنعتی مالک اشتر، ایران

2 استادیار، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی گلپایگان، ایران.‏

3 استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه صنعتی همدان

10.22034/frj.2019.188516.1087

چکیده

در سال‌های اخیر، آلیاژهای منگنز-نیکل با توجه به خواص مغناطیسی منحصر به ‌فرد مورد مطالعه محققین بسیاری قرار گرفته‌اند. هدف از ‏این پژوهش، بررسی اثر فشار محفظه بر فرایند تبخیر منگنز و تعیین فشارهای بحرانی و ممانعت کننده‌ی تبخیر و دما برای این عنصر در ‏آلیاژهای منگنز- نیکل (‏‎70Mn-25Ni-5Cr‎‏ و ‏‎40Mn-55Ni-5Cr‎‏) است. در این زمینه، آلیاژهای منگنز- نیکل در کوره‌ی ذوب ‏القایی تحت خلأ، تحت اتمسفر آرگون با فشار مثبت  4/0، 6/0، 8/0، 1، 2، 5/2، 3، 4 و 5/4 بار در دماهای1450،1550و 1650 ‏درجه سانتی‌گراد ذوب شدند. برای شرایط فوق، نرخ تبخیر محاسبه شد و با ترسیم نمودارهای نرخ تبخیر با فشار، میزان فشار بحرانی و ‏فشار ممانعت کننده برای تبخیر منگنز مشخص شد. نتایج به دست آمده از این تحقیق نشان داد است که برای تبخیر منگنز در آلیاژهای منگنز- ‏نیکل، فشار 1 بار، فشار بحرانی و فشار 3 بار، فشار ممانعت کننده است. همچنین مشخص شد که افزایش دمای ذوب، باعث افزایش نرخ ‏تبخیر‎ ‎می‌شود اما میزان فشار بحرانی و فشار ممانعت کننده برای تبخیر منگنز در آلیاژها بدون تغییر باقی می‌مانند.‏

کلیدواژه‌ها

موضوعات


[1]     صادقی م.، منصوری ح. ، هادی م.، بررسی فرایند همگن‌سازی آلیاژ جدید Mn-25Ni-5Cr.، فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی)، 1394، 3(9) 163-178.

[2]     Dunand D.C., Müllner P., Size effects on magnetic actuation in Ni‐Mn‐Ga shape‐memory alloys, Advanced Materials, 2011, 23(2) 216-232.

[3]     Krenke T., Duman E., Acet M., Wassermann E.F., Moya X., Mañosa L., Ouladdiaf B., Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn, In. Physical Review B, 2007, 75(10) 104-414.

[4]     Hu F. X., Shen B. G., Sun J. R., Wu G. H., Large magnetic entropy change in a Heusler alloy Ni 52.6 Mn 23.1 Ga 24.3 single crystal, Physical Review B, 2001, 64(13) 132-412.

[5]     Krenke T., Duman E., Acet M., Wassermann E.F., Moya, X., Manosa L., Planes A., Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys, Nature Materials, 2005, 4(6) 450-454.

[6]     Vas' kovskiy V.O., Moskalev M.E., Lepalovskij V.N., Svalov A. V., Larrañaga A., Balymov K.G., Kulesh N.A. Crystal structure and exchange bias of Ni-Mn-based films, Journal of Alloys and Compounds, 2019, 777, 264-270.

[7]     Glavatskyy I., Glavatska N., Dobrinsky A., Hoffmann J. U., Söderberg, O., Hannula, S. P., Crystal structure and high-temperature magnetoplasticity in the new Ni–Mn–Ga–Cu magnetic shape memory alloys, Scripta Materialia, 2007, 56(7) 565-568.

[8]     Hassan U.N., Shah I.A., Jelani M., Naeem M., Riaz S., Naseem S., Effect of Ni-Mn ratio on structural, martensitic and magnetic properties of Ni-Mn-Co-Ti ferromagnetic shape memory alloys. Materials Research Express, 2018, 5(8) 86-102.

[9]     Puidokas S.M. Mangano F., General electric Co. Method of repairing superalloys. U.S. Patent Application 2019, 16/028,016.

[10] Fisher D. J., Transient Liquid Phase Bonding, Materials Research Forum LLC, (2019, February).

[11] Eminoglu C.M., Cui Y., Dorriety D.J., Tollison B.L. Cook P.A., General electric Co,. Method of welding superalloys. U.S. Patent Application 2018, 15/622,605.

[12] Buliński P., Smolka J., Siwiec G., Blacha L., Golak S., Przyłucki R., Melka B., Numerical examination of the evaporation process within a vacuum induction furnace with a comparison to experimental results, Applied Thermal Engineering, 2019, 150, 348-358.

[13] Blacha L., Siwiec G., Oleksiak B., Loss of aluminium during the process of Ti-Al-V alloy smelting in a vacuum induction melting (VIM) furnace, Metalurgija, 2013, 52(3) 301-304.

[14] Guo J., Jia J., Liu Y., Liu G., Su Y., Ding H., Evaporation behavior of aluminum during the cold crucible induction skull melting of titanium aluminum alloys, Metallurgical and Materials Transactions B, 2000, 31(4) 837-844.

[15] J. Gue et.al, The critical pressure and impending pressure of Al evaporating during Induction Skull Melting Processing of TiAl, Metallurgical and Materials Transactions A, 2002, 33, 3249-3253.

[16] Brodowsky H., Schaller H. J. (Eds.), Thermochemistry of alloys: Recent developments of Experimental Methods (Vol. 286), Springer Science & Business Media, 2012.

[17] Langmuir I., The vapor pressure of metallic tungsten, Physical Review, 1913, 2(5) 329.

[18] Horike S., Ayano M., Tsuno M., Fukushima T., Koshiba Y., Misaki M., Ishida K., Thermodynamics of ionic liquid evaporation under vacuum, Physical Chemistry Chemical Physics, 2018. 20(33) 21262-21268.

[19] Arblaster J.W., Thermodynamic Properties of Tungsten, Journal of Phase Equilibria and Diffusion, 2018, 39(6) 891-907.

[20] Ding L., Ladwig P.F., Yan X., Chang Y.A., Thermodynamic stability and diffusivity of near-equiatomic Ni–Mn alloys, Applied Physics Letters, 2002, 80(7) 1186-1188.