@article { author = {Akbari, Faezeh and Taghiabadi, Reza and Saghafi Yazdi, Morteza and Ansarian, Iman}, title = {Investigation of Effect of Mold Mechanical Vibration During ‎Solidification on the Structure ‎and Corrosion Resistance of ‎ Zn-4Si Alloy}, journal = {Founding Research Journal}, volume = {6}, number = {2}, pages = {157-167}, year = {2022}, publisher = {Iranian Foundrymen's Society}, issn = {2588-5367}, eissn = {2588-5359}, doi = {10.22034/frj.2023.390435.1175}, abstract = {In the current study the effect of mold mechanical vibration during the solidification was studied on microstructure and corrosion behavior of Zn-4Si composite. According to the microstructural observation results, mechanical vibration substantially improved the SiP particle distribution and refined them. The image analysis results showed that mechanical vibration at 20, 40, and 60 Hz reduced the average size of SiP particles by 34, 55, and 75%, and increased their number density by 6, 16, and 36 times, respectively. Mechanical vibration at the 20, 40, and 60 Hz also decreased the average grain size by 50, 68, and 76%, respectively and increased the equiaxed zone in castings. The results of Tafel and impedance corrosion tests at 3.5 wt. % NaCl solution implied on increasing the corrosion current and shifting the corrosion potential to the more negative values in mechanically vibrated samples. The corrosion current of as-cast and 60 Hz samples were determined as -1.3610-5 and -2.3310-5 A, respectively. Mechanical vibration also reduces the corrosion resistance of samples where the resistance of 60 Hz sample (about 76 ohm) is lower than that of as-cast sample by about 45%. The increased density of grain boundaries and fine distribution of primary Si particles (as cathodic points) in the composite matrix are characterized as the most important factors decreasing the corrosion resistance of the composite. This is because they increased the number and interspacing of the galvanic cells within the matrix and exhibited appropriate locations for pitting.}, keywords = {Zn-4Si alloy,Mechanical vibration,Microstructure,corrosion}, title_fa = {بررسی تاثیر ارتعاش قالب هنگام انجماد بر ساختار و مقاومت به خوردگی آلیاژ ریختگی Zn-4Si}, abstract_fa = {در تحقیق حاضر، تاثیر ارتعاش قالب هنگام انجماد بر ریزساختار و رفتار خوردگی آلیاژ ریختگی Zn-4Si بررسی شده است. بر اساس نتایج به دست آمده از مطالعات ریزساختاری، اعمال ارتعاشات مکانیکی، موجب کاهش ابعاد و بهبود توزیع ذرات سیلیسیم اولیه (SiP) در زمینه آلیاژ می‌شود. همچنین بر اساس نتایج پردازش تصویری، در مقایسه با آلیاژ ریختگی، اندازه متوسط ذرات SiP پس از ارتعاش تحت سه بسامد 20، 40 و 60 هرتز به ترتیب حدود 34، 55 و 75 درصد کاهش و تعداد این ذرات در واحد سطح به ترتیب 6، 16 و 36 برابر می‌شود. علاوه بر این، ارتعاش قالب تحت سه بسامد 20، 40 و 60 هرتز به ترتیب موجب کاهش 50، 68 و 75 درصدی اندازه دانه آلیاژ و توسعه ناحیه هم محور می‌شود. نتایج حاصل از دو آزمایش خوردگی تافل و امپدانس در محلول NaCl 5/3 درصد وزنی حاکی از افزایش جریان خوردگی و انتقال ولتاژ خوردگی به مقادیر منفی‌تر در نمونه‌های ارتعاش یافته است. جریان خوردگی در نمونه بدون ارتعاش 5-1036/1- آمپر و در نمونه 60 هرتز 5-1033/2- آمپر است. همچنین مقاومت انتقال بار در نمونه 60 هرتز حدود 76 اهم است که در مقایسه با نمونه بدون ارتعاش (5/136 اهم) حدود 45 درصد کمتر است. افزایش چگالی مرزهای دانه و توزیع ظریف ذرات SiP (به عنوان مراکز کاتدی) در زمینه آلیاژ از جمله مهمترین عوامل افت مقاومت به خوردگی هستند زیرا موجب افزایش تعداد و کاهش فاصله بین پیل‌های گالوانیک در زمینه شده و مکان‌های مناسبی برای حفره‌زنی و حمله توسط محلول خورنده ایجاد می‌نماید.}, keywords_fa = {آلیاژ Zn-4Si,ارتعاش مکانیکی,ریزساختار,خوردگی}, url = {https://www.foundingjournal.ir/article_171074.html}, eprint = {https://www.foundingjournal.ir/article_171074_ab81549743d184f92f1c6b0dac03f7d8.pdf} }