Effect of Remelting and Standard Heat Treatment on Microstructure ‎and ‎Mechanical Properties of IN738LC Superalloy

Document Type : Original Research Article

Authors

1 PhD Student, Materials Engineering, Materials and Energy Research Center, Karaj, Iran.‎

2 Assistant Professor of materials engineering department of islamic azad university karaj branch

3 School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehrān, Iran

4 Bachelor, Department of Manufacturing and Mechanical Engineering, Islamic Enghelab ‎Faculty, Tehran, Iran.‎

5 M.Sc. Student, Department of Materials Engineering and Metallurgy, Karaj Branch, ‎Islamic Azad University Karaj, Iran.‎

10.22034/frj.2020.238339.1122

Abstract

In the present study, IN738LC superalloy ingot was re-melted and cast, then heat treated under ‎standard conditions. Microstructural studies with field emission scanning electron microscopy ‎‎(FESEM) equipped energy dispersive spectroscopy (EDS) showed that after re-melting and ‎controlled casting, the amount of porosity and size of γ' precipitates decreases. Also, with ‎applying the standard heat treatment cycle, the primary γ' precipitates less than 1µm in size and ‎cubic morphology and nano‏spherical‏ ‏secondary γ' precipitates appeared and eutectic γ-γˈ ‎regions were completely eliminated. Vickers hardness test results under a load of 10 Kg showed ‎that the lowest hardness is related to the solutionized sample due to remove the coarsened γ' ‎precipitates and the highest hardness (833 H.V.) is obtained after aging. According to the results ‎of the tensile test at ambient and 750◦C temperatures, by re-melting and applying the standard ‎heat treatment due to structural modification, strength and elongation increased at both ambient ‎temperature and 750◦C. Also, with applying the standard heat treatment, failure mechanism of ‎IN738LC superalloy was transferred from brittle trans-dendritic failure to brittle inter-dendritic ‎failure with little footprints of ductile fracture.‎

Keywords

Main Subjects


[1] Lagow B.W., Materials selection in gas turbine engine design and the role of low ‎thermal expansion materials, Journal of Metals, 2016, 68, 2770-2775.‎
‎[2] El-Bagoury N., Ni based superalloy: casting technology, metallurgy, development, ‎properties and applications, International Journal of Engineering Sciences & Research ‎Technology, 2016, 5(2) 108-152.‎
‎[3] Nageswara Rao M., Application of superalloys in petrochemical and marine sectors in India, ‎Transactions of the Indian Institute of Metals, 2008, 61, 87-91.‎
‎[4] Agh A., Amini A., Investigation of the stress rupture behavior of GTD-111 superalloy melted ‎by VIM/VAR, International Journal of Minerals, Metallurgy and Materials, 2018, 25, 1035–‎‎1041.‎
‎[5] Tarik Boyraz M., IN738LC Microstructure Optimization with Heat Treatment and Simulation ‎to Improve Mechanical Properties of Turbine Blade, Master of Science Thesis, Middle East ‎Technical University, 2018.‎
‎[6] Heydari D., Shahkaram Fard A., Bakhshi A., Drezet J.M., Hot tearing in polycrystalline Ni-‎based IN738LC superalloy: Influence of Zr content, Journal of Materials Processing Technology, ‎‎2014, 214(3), 681-687.‎
‎[7] El-Bagoury N., Waly M., Nofal A., Effect of various heat treatment conditions on ‎microstructure of cast polycrystalline IN738LC alloy, Materials Science and Engineering: A, ‎‎2008, 487(1–2) 152-161.‎
‎[8] Tang W.S., Xiao J. F., Nan Q., Gao S.F., Zhang J., Li Y.J., Study of microstructure ‎degradation and rejuvenation evolution for F-class gas turbine blade, Materials Science and ‎Technology, 2019, 35(10), 1275-1282.‎
‎[9] Daleo J.A., Ellison K.A., Boone D.H., Metallurgical considerations for life assessment ‎and the safe refurbishment and requalification of gas turbine blades, Journal of Engineering ‎for Gas Turbines and Power, 2002, 124, 571-579.‎
‎[10] Khodabakhshi A., Mashreghi A., Shajari Y., Razavi S.H., Investigation of microstructure ‎properties and quantitative metallography by different etchants in the service-exposed nickel-‎based superalloy turbine blade, Transactions of the Indian Institute of Metals, 2018, 71, 849-‎‎859.‎
‎[11] Yang J., Zheng O., Ji M., Sun X., Hu Z., Effects of different C contents on the ‎microstructure, tensile properties and stress-rupture properties of IN792 alloy, Materials Science ‎and Engineering: A, 2011, 528(3) 1534-1539.‎
‎[12] Jafari A., Abbasi S.M., Rahimi A., Morakabati M., Seifollahi M., The effect of solution ‎treatment on the microstructure of the cast Ni-based IN100 superaralloy, Association of ‎Metallurgical Engineering of Serbia, 2015, 21(3) 167-181.‎
‎]‎‏13‏‎[‎‏ شجری ی.، رضوی س.ح.، سیدرئوفی ز.س.، اثر عملیات انحلالی بر خصوصیات ریزساختاری ‏رسوبات ‏گاماپرایم در ‏سوپرآلیاژ ‏IN738LC‏ ‏قبل و بعد از پیرسازی، پژوهش‌نامه ریخته‌گری، 1396، 1(2) 99-108.‏
‎[14] Shajari Y, Seyedraoufi Z.S., Alizadeh A., Razavi S.H., Porhonar M., Mirzavand M., Effect ‎of solution temperature of rejuvenation heat treatment on the stability of γ' precipitates in Ni-base ‎superalloy IN738LC during long-term heating, Materials Research Express, 2019, 6(12), Article ‎No. 25050.‎
‎[15] Goswami K. N., Mottura A., Can slow-diffusing solute atoms reduce vacancy diffusion in ‎advanced high-temperature alloys, Materials Science and Engineering: A, 2014, 617, 194-199.‎
‎[16] Campbell C.E., Boettinger W., Kattner U. R., Development of a diffusion mobility ‎database for Ni-base superalloys, Acta Materialia, 2002, 50(4) 775-792.‎
‎[17] Balikci E., Raman A., Mirshams R.A., Influence of‏ ‏various heat treatments on the ‎microstructure of‏ ‏polycrystalline IN738LC, Metallurgical and‏ ‏Materials Transaction A, 2002, ‎‎28A, 1993-1997.‎
‎[18] Kavoosi V, Abbasi S.M., Ghazi Mirsaed S.M., Mostafaei M., Influence of cooling rate on ‎the solidification behavior and microstructure of IN738LC superalloy, Journal of Alloys and ‎Compounds, 2016, 680, 291-300.‎
‎[19] Ru Y., Li S., Zhou J., Pei Y., Wang H., Gong S., Xu H., Dislocation network with ‎paircoupling structure in {111} γ/γ′ interface of Ni-based single crystal superalloy, Scientific ‎Report, 2016, 6, Article No. 29941.‎
‎[20] Smith T.M.,  Esser B.D., Antolin N., Carlsson A., Williams R.E.A., Wessman A., Hanlon T., ‎Fraser H.L., Windl W., McComb D.W., Mills M.J., Phase transformation strengthening of high-‎temperature superalloys, Nature Communications, 2016, 7, Article No. 13434.‎
‎]‎‏21‏‎[‎‏ شجری ی.، رضوی س.ح.، سیدرئوفی ز.س.، اثر محیط عملیات حرارتی انحلالی بر ریزساختار و سختی سوپرآلیاژ پایه ‏نیکل ‏‎IN738LC، پژوهش‌نامه ریخته‌گری، 1397، 2(3)، 161-179.‏
‎]‎‏22‏‎[‎‏ سمیعی م.، شجری ی.، رضوی س.ح.، سیدرئوفی ز.س.، تأثیر عملیات سردکاری بر جوانسازی پره توربین گازی کارکرده از ‏جنس ‏IN738LC، پژوهش‌نامه ریخته‌گری، 1398، 3(3) 163-174.‏
‎[23] Barjesteh M.M.,  Abbasi S.M., Zangeneh Madar K., Shirvani K., The effect of heat ‎treatment on characteristics of the gamma prime phase and hardness of the nickel-based ‎superalloy Rene®80, Materials Chemistry and Physics, 2019, 227, 46-55.‎
‎[24] Zýka J., Andršová I, Podhorná B, Hrbáček K., Mechanical properties and microstructure of ‎IN738LC Nickel superalloy castings, Materials Science Forum, 2014, 782, 437-440.‎
‎[25] Balikci E., Raman A., Mirshams R.A., Tensile strengthening in the nickel-base superalloy ‎IN738LC, Journal of Materials Engineering and Performance, 2000, 9, 324–329.‎
‎[26] Bian H., Xu X., Li Y., Koizumi Y., Wang Z., Chen M., Yamanaka K., Chiba A., Regulating ‎the coarsening of the γ′ phase in superalloys, NPG Asia Materials, 2015, 7, e212.‎