The Effects of Cooling Rate after Solutionizing on the Microstructural ‎Evaluation of Cast IN718 Superalloy during Long-Term Thermal Exposure

Document Type : Original Research Article

Authors

1 M.Sc. Student, Department of Materials Engineering and Metallurgy, Karaj Branch, Islamic Azad University, Karaj, Iran.‎

2 Assistant Professor, Department of Materials Engineering and Metallurgy, Karaj Branch, Islamic Azad University, Karaj, Iran.‎

10.22034/frj.2020.237065.1120

Abstract

In the present study, cast IN718 superalloys solutionized at 1050◦C for 150 min. Afterwards, the samples were quenched with three various cooling rates including 240◦C/s, 5◦C/s and 0.1◦C/s. After solutionizing, the samples were aged at 750◦C for 30, 60, and 90 hrs. Microstructural investigation was carried out by optical microscopy (OM), Field Emission Scanning Electron Microscopy (FESEM), and X-ray diffraction (XRD). The results indicated that as the cooling rate increased, the conditions for complete dissolution were provided and only a small amount of MC carbide (TiC) phase remains in the matrix. By reducing the cooling rate and increasing aging time, due to the increase in volume fraction and size of secondary precipitates, the shear transformation of the ''γto δ increases, and consequently, the δ precipitates increased. After solutionizing, as the cooling rate increased, the hardness due to the decrease in the amount of cooling precipitates decreased. Besides, as the aging time increases, due to the abnormal growth of precipitates, hardness first increased and then experienced a decrease.

Keywords


[1] Umbrello D., The Effects of Cutting Conditions on Surface Integrity in Machining Inconel 718 Alloy, In Key Engineering Materials, 2013, 554, 2093-2100.
[2] Arrazola P.J., Kortabarria A., Madariaga A., Esnaola J.A., Fernandez E., Cappellini C., Ozel T., On the machining induced residual stresses in IN718 nickel-based alloy: Experiments and predictions with finite element simulation. Simulation Modelling Practice and Theory, 2014, 41, 87-103.
[3] Cai D., Zhang W., Nie P., Liu W., Yao M., Dissolution kinetics of δ phase and its influence on the notch sensitivity of Inconel 718, Materials Characterization, 2007, 58, 220–225.
[4] Zhu D., Zhang X., Ding H., Tool wear characteristics in machining of nickel-based superalloys, International Journal of Machine Tools and Manufacture, 2013, 64, 60-77.
[5] Kaynak Y., Evaluation of machining performance in cryogenic machining of Inconel 718 and comparison with dry and MQL machining, The International Journal of Advanced Manufacturing Technology, 2014, 72(5-8) 919-933.
[6] Obikawa T., Kamata Y., Asano Y., Nakayama K., Otieno A.W., Micro-liter lubrication machining of Inconel 718, International Journal of Machine Tools and Manufacture, 2008, 48(15) 1605-1612.
[7] Niang A., Viguier B., Lacaze J., Some features of anisothermal solid-state transformations in alloy 718, Materials Characterization, 2010, 61, 525–534.
[8] Arrazola P.J., Garay A., Fernandez E., Ostolaza K., Correlation between tool flank wear, force signals and surface integrity when turning bars of Inconel 718 in finishing conditions, International Journal of Machining and Machinability of Materials, 2014, 15(1-2) 84-100.
[9]  Sui S., Tan H., Chen J., Zhong C., Li Z., Fan W., Huang W., The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing, Acta Materialia, 2019, 164, 413-427.
[10] Aramcharoen A., Chuan S.K., An experimental investigation on cryogenic milling of Inconel 718 and its sustainability assessment, Procedia CIRP, 2014, 14, 529-534.
[11] Gribbin S., Ghorbanpour S., Ferreri N.C., Bicknell J., Tsukrov I., Knezevic M., Role of grain structure, grain boundaries, crystallographic texture, precipitates, and porosity on fatigue behavior of Inconel 718 at room and elevated temperatures, Materials Characterization, 2019, 149, 184-197.
[12] Niang A., Viguier B., Lacaze J., Some features of anisothermal solid-state transformations in alloy 718, Materials Characterization, 2010, 61, 525–534.
[13] Geng L., Na Y.S., Park N.K., Continuous cooling transformation behavior of Alloy 718, Materials Letters, 1997, 30, 401–405.
[14] Anbarasan N., Gupta B. K., Prakash S., Muthukumar P., Oyyaravelu R., Kumar R.J.F., Jerome S., Effect of heat treatment on the microstructure and mechanical properties of Inconel 718, Materials Today: Proceedings, 2018, 5(2) 7716-7724.
[15] Garcia C.I., Lis A.K., Loria E.A, Deardo A.J., Thermomechanical processing and continuous cooling transformation behavior of IN-718, in: Antolovich S.D., Stusrud R.W., MacKay R.A., Anton D.L., Khan T., Kissinger R.D., Klarstrom D.L(Eds.)., Superalloys  The Minerals, Metals and Materials Society, Pennsylvania, 1992, 527-536.
[16] Jackman L.A., Forming, Fabrication and Heat Treatment of Superalloys, in Superalloys Source Book, ASM, 1984, 217-233.
[17]   Anderson M., Thielin A.L., Bridier F., Bocher P., Savoie, J., δ Phase precipitation in Inconel 718 and associated mechanical properties, Materials Science and Engineering: A, 2017, 679, 48-55.
[18]  Li X., Shi J.J., Cao J.J., Russel A.M., Zhou Z.J., Li C.P., Chen G.F., Improved plasticity of Inconel 718 superalloy fabricated by selective laser melting through a novel heat treatment process, Materials & Design, 2019, 180, 107915.
[19]  Renderos M., Torregaray A., Gutierrez-Orrantia M.E., Lamikiz A., Saintier N., Girot F., Microstructure characterization of recycled IN718 powder and resulting laser clad material, Materials Characterization, 2017, 134, 103-113.
 [20] Belan J., Hurtalová L., Vaško A., Tillová E., Metallography evaluation of IN718 after applied heat treatment. Metallurgical Transactions, 2014, 1(10) 2667-2675.
]21[ شجری ی.، رضوی س.ح.، سید رئوفی ز.س.، اثر عملیات انحلالی بر خصوصیات ریزساختاری رسوبات گاماپرایم در سوپرآلیاژ IN738LC قبل و بعد از پیرسازی، پژوهش‌نامه ریخته‌گری، 1396، 1(2) 99-108.
]22[ سمیعی م.، رضوی س.ح.،  سید رئوفی ز.س.، اثر سرعت سردکردن و نگه‌داری‏ زیر صفر عمیق بر ریزساختار و سختی سوپرآلیاژ ریختگی ‏IN738LC‏ پس از عملیات حرارتی آنیل انحلالی کامل، پژوهش‌نامه ریخته‌گری، 1398، 3(1) 45-52.
[23] Smith M., Bichler L., Yannacopoulos S., Gholipour J., Wanjara P., Characterization of in-service and virgin inconel 718 superalloy, COM 2014-Conference of Metallurgists Proceedings ISBN: 978-1-926872-24-7.
[24] Xixue X., Xinjie D., Baosen W., The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal, Journal of Alloys and Compounds, 2014, 593, 110-116.
 [25] Zhang Y.N., Cao X., Wanjara P., Microstructure and hardness of fiber laser deposited Inconel 718 using filler wire, The International Journal of Advanced Manufacturing Technology, 2013, 69(9-12) 2569-2581.
[26] Renhof L., Guder S., Werner E., Hardness and phase analysis of IN 718 deformed at high strain rate, Analytical and bioanalytical chemistry, 2004, 379(4) 619-621.
[27] Sharghi-Moshtaghin R., Kahn H., Ge Y., Low-temperature carburization of the Ni-base superalloy IN718: improvements in surface hardness and crevice corrosion resistance, Metallurgical and Materials Transactions A, 2010, 41(8) 2022-2032.
[28]  Bi Z., Dong J.X., Zhang M.C., Zheng L., Xie X.S., Mechanism of α-Cr precipitation and crystallographic relationships between α-Cr and δ phases in Inconel 718 alloy after long-time thermal exposure, International Journal of Minerals, Metallurgy and Materials, 2010, 17(3) 312-317.
[29] Shajari Y., Seyedraoufi Z.S., Alizadeh A., Razavi S.H., Porhonar M., Mirzavand M., Effect of solution temperature of rejuvenation heat treatment on the stability of γ' precipitates in Ni-base superalloy IN738LC during long-term heating, Materials Research Express, 2019, 6(12) Article No. 25050.
[30] Bi Z., Dong J., Zhang M., Zheng L., Xie X., Mechanism of α-Cr precipitation and crystallographic relationships between α-Cr and δ phases in Inconel 718 alloy after long-time thermal exposure, International Journal of Minerals, Metallurgy, and Materials, 2010, 17, 312–317.