Effect of Si on Castability of Al-Cu-Si Alloys

Document Type : Original Research Article

Authors

1 M.Sc. Student, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran

2 Assistant Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran

3 Associate Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran

10.22034/frj.2021.246789.1128

Abstract

This study was conducted to investigate the effect of Si addition (1, 2, 3, and 5 wt. %) on the microstructure and castability of hypoeutectic Al-4.5Cu-Si alloys. According to the results, Si addition increased the average size and volume fraction of eutectic Si platelets in the microstructure. Adding Si also improved the fluidity and decreased the porosity content of the alloy, and enhanced its resistance against hot tearing. According to the constrained rod test results, the hot tearing sensitivity index (HTS) of the alloys containing 1, 3, and 5 wt. % Si, was decreased by 48, 78, and 88%, respectively. In agreement with hot tearing testing results, the extensive existence of dendrites and shrinkage micropores on the hot torn surface of the alloy without Si implies on its low potential in feeding the solidification shrinkages and healing hot cracks. Adding Si decreased the amount of shrinkage micropores on the hot torn surface and due to improving the fluidity as well as increasing the amount of Al-Cu-Si ternary eutectic at the last stage of solidification, improved the feeding characteristics of alloy. Therefore, the amount of free dendrite arms was significantly decreased on the fracture surface. However, adding 5 wt. % Si increased the amount of eutectic Si on the hot torn surface giving rises to a more brittle fracture mode.

Keywords

Main Subjects


[1]    Ganjefard K., Taghiabadi R., Noghani M.T., Ghoncheh M.H. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si, International Journal of Mineral Metallurgy and Material. 2020. https://doi.org/10.1007/s12613-020-2039-7.
[2]    Choi H., Cho W., Konishi H., Kou S., Li X., Nanoparticle-induced superior hot tearing resistance of A206 alloy, Metallurgical and Materials Transactions A, 2012, 44(4) 1897–1907.
[3]    Han N., Bian X., Li Z., Mao T., Wang C. Effect of Si on the microstructure and mechanical properties of the Al-4.5%Cu alloys, Acta Metallurgica Sinica (English Letters), 2006, 19(6) 405–410.
[4]   تقی‌آبادی ر، امامی م.، متالورژی ریخته­گری تحت فشار آلومینیم، سازمان انتشارات جهاد دانشگاهی واحد قزوین، 1395.
[5]    Di Sabatino M., Arnberg L., A review on the fluidity of Al based alloys, Metallurgical Science and Technology, 2004, 22(1) 9-15.
[6]   یوسفی ف، تقی­آبادی ر، باغشاهی س، بررسی تاثیر منگنز بر قابلیت ریخته گری آلیاژهای هیپویوتکتیک Al-2Ni-xMn، پژوهشنامه ریخته‌گری، پاییز 1396، 1(2) 69-78.
[7]    Lin S., A study of hot tearing in wrought aluminium alloys, Dissertation, Université du Québec à Chicoutimi, Canada, 1999, ISBN: 1412308348.
[8]    Li S., Sadayappan K., Apelian D., Characterization of hot tearing in Al cast alloys: methodology and procedures, International Journal of Cast Metals Research, 2011, 24(2) 88-95.
[9]    Li S., Sadayappan K., Apelian D. Role of grain refinement in the hot tearing of cast Al-Cu alloy, Metallurgical and Materials Transactions B, 2013, 44(3) 614–623.
[10]  Nabawy A.M., Samuel A.M., Samuel F.H., Doty H.W., Effects of grain refiner additions (Zr, Ti–B) and of mould variables on hot tearing susceptibility of recently developed Al–2 wt-%Cu alloy, International Journal of Cast Metals Research, 2013, 26(5) 308–317.
[11]  Li S., Sadayappan K., Apelian D., Effects of mold temperature and pouring temperature on the hot tearing of cast Al-Cu alloys, Metallurgical and Materials Transactions B, 2016, 47(5) 2979–2990.
[12]  Spittle J.A., Cushway A.A., Influences of superheat and grain structure on hot-tearing susceptibilities of AI-Cu alloy castings, Metals Technology, 1983, 10(1) 6–13.
[13]  Nasreesfahani M.R., Niroumand B., Effect of melt super heat on hot tearing of A206 aluminum alloy, Proceedings of Iran International Aluminum Conference (IIAC2009) Ed. Soltanieh M., Tehran, Iran, 2009, 47-52.
[14]  Veldman N.L.M., Dahle A.K., StJohn D.H., Arnberg L., Dendrite coherency of Al-Si-Cu alloys, Metallurgical and Materials Transactions A, 2001, 32(1) 147–155.
[15]  Lemieux A., Langlais J., Bouchard D., Grant Chen X., Effect of Si, Cu and Fe on mechanical properties of cast semi-solid 206 alloys, Transactions of Nonferrous Metals Society of China, 2010, 20(9) 1555–1560.
[16]  Lemieux A., Langlais J., Chen X.G., Reduction of hot tearing of cast semi-solid 206 alloys, Solid State Phenomena, 2012, 192–193, 101–106.
[17]  Campbell J., Complete Casting Handbook, Butterworth-Heinemann (Elsevier) 2011, UK.
[18]  Kamguo Kamga H., Larouche D., Bournane M., Rahem A., Hot tearing of aluminum–copper B206 alloys with iron and silicon additions, Materials Science and Engineering: A, 2010, 527(27–28) 7413–7423.
[19]  Kamga H.K., Larouche D., Bournane M., Rahem A., Mechanical properties of aluminium–copper B206 alloys with iron and silicon additions, International Journal of Cast Metals Research, 2012, 25(1) 15–25.
[20]  Liu K., Cao X., Chen X.-G., Tensile properties of Al-Cu 206 cast alloys with various iron contents, Metallurgical and Materials Transactions A, 2014, 45(5) 2498–2507.
[21]  Elgallad E.M., Chen X.-G., On the microstructure and solution treatment of hot tearing resistant semi-solid 206 alloy, Materials Science and Engineering: A, 2012, 556, 783–788.
[22]  Kang B.K., Sohn I., Effects of Cu and Si contents on the fluidity, hot tearing, and mechanical properties of Al-Cu-Si alloys, Metallurgical and Materials Transactions A, 2018, 49(10) 5137–5145.
[23]  Lemieux A., Langlais J., Bouchard D., Grant Chen X., Effect of Si, Cu and Fe on mechanical properties of cast semi-solid 206 alloys, Transactions of Nonferrous Metals Society of China, 2010, 20(9) 1555–1560.
[24]  Li W., Cui S., Han J., Xu C., Effect of Silicon on the casting properties of Al-5.0% Cu alloy, Rare Metals, 2006, 25(6) 133–135.
[25]  تقی‌آبادی ر.، تلافی نوغانی م.، کریمی ی.، ایرانشاهی م.، نظری م.، تاثیر عملیات حرارتی و مس بر خواص کششی و اندیس کیفیت آلیاژهای Al-7Si-0.35Mg-xFe، فصلنامه پژوهشی فرایندهای نوین در مهندسی مواد، 1396، 11(1) 65-75.
[26]  Raghavan V., Al-Cu-Si (Aluminum-Copper-Silicon), Journal of Phase Equilibria and Diffusion, 2007, 28(2) 180–182.
[27]  Monroe C., Beckermann C., Development of hot tear indicator for steel castings, Materials Science and Engineering A, 2005, 413-414, 30-36.
[28]  Mollard F.R., Flemings M.C., Nyama E.F., Understanding aluminium fluidity: the key to advanced cast products, AFS Trans., 1987, 95, 647- 652.
[29]  Casari D., The grain refinement and the Ni/V contamination in the A356 aluminum casting alloy: an experimental study on impact and tensile properties, Dissertation, Università degli Studi di Ferrara, 2013.
Zhang W.D., Yang J., Dang J.Z., Liu Y., Xu H., Effects of Si, Cu and Mg on the High-Temperature Mechanical Properties of Al-Si-Cu-Mg Alloy, Advanced Materials Research, 2013, 652.