Effect of Inoculation and Casting Modulus on the as Cast Microstructure of ‎Austenitic Manganese Iron with Nodular Graphite

Document Type : Original Research Article

Authors

1 MSc Student in Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran

2 BSc Student in Materials Engineering, Babol Noshirvani University of Technology.‎

3 Associate Professor, Faculty of Materials and Industrial Engineering, , Babol Noshirvani University of Technology

10.22034/frj.2021.205511.1103

Abstract

In this paper, the effects of grain refiner amount, its addition method and the casting modulus (wall thickness) on the solidification microstructure of austenitic nodular graphite cast iron with 5 weight percent manganese were investigated. For this purpose, the inoculation was performed with ferrosilicon zirconium after spheroidizing with ferrosilicon magnesium. The grain refiner additions were performed using two basic method, ladle inoculation and pouring stream inoculation in different amounts (0, 0.1, 0.2 and 0.3% by weight). In addition, the casting process was performed in the step form sand-sodium silicate binder mold with 5, 10 and 20 mm thicknesses. Microstructural evaluations and hardness measuring were achieved using the optical and electron microscopes, EDS, MIP4 visual analysis and Rockwell C test method. The results showed that the as cast microstructure of the cast iron consists of nodular graphite and eutectic carbide at the pearlitic matrix. The amount of eutectic carbides and graphite nodule count increase and the amount of pearlite and the size of the graphite’s decrease by decreasing the mold thickness.  For all casting modulus (wall thicknesses), the inoculation process decreases the amount of eutectic carbide and graphite size and increases the graphite nodule count and its volume fraction. In addition, it was observed that the pouring stream inoculation is more effective than the ladle inoculation.

Keywords

Main Subjects


[1] گلعذار م. ع.، اصول و کاربرد عملیات حرارتی فولادها و چدن‌ها، انتشارات دانشگاه صنعتی اصفهان، 1370.
[2] ASM International, Casting Design and Performance. ASM International, 2009.
[3] مهدوی و.، عابدی ا.، ریخته‌گری آلیاژهای آهنی، دانشگاه شهید رجایی، 1394.
[4] Rashidi M.M., Idris M.H., Effect of inoculation on microstructure, mechanical and corrosion properties of high manganese ductile Ni-resist alloy, Materials and Design, 2013, 51, 861–869.
[5] Cox G.J., Some Properties of Ductile, Nickel-containing, lean-alloy austenitic irons, Foundryman, 1988, 81(9) 435–443.
[6] Dasgupta R.K., Mondal D.K., Chakrabarti A.K., Ganguli A.C., Kinetics of austenitisation of ductile irons containing two different contents of manganese and copper, International Journal of Cast Metsls Research, 2012, 25(4) 239–245.
[7] Baraniecki C., Pinchbeck P. H., Pickering F. B., Some aspects of graphitization induced by iron and ferro-silicon additions, Carbon, 1969, 7(2) 213–224.
[8] Riposan I., Chisamera M., Stan S., Skaland T., A new approach to graphite nucleation mechanism in gray irons, in Proceedings of the AFS Cast Iron Inoculation Conference, September, 2005, 29–30.
[9] Stefanescu D.M., Alonso G., Suarez R., Recent developments in understanding nucleation and crystallization of spheroidal graphite in iron-carbon-silicon alloys, Metals, 2020, 10(2) 221.
[10] Olsen S.O., Skaland T., Hartung C., Inoculation of grey and ductile iron a comparison of nucleation sites and some practical advises, in 66th World Foundry Congress, 2004, 891–902.
[11] Mourad M., El-Hadad S, Ibrahim M., Influence of inoculant type on the microstructure characteristics and mechanical properties of ductile iron, Transactions of the Indian Institute of Metals, 2020, 73(4) 1027–1041.
[12] دیواندری م.، نیکوکار ح.، بختیاری ر.، بهینه‌سازی شاخص حلالیت منیزیم در تولید چدن‌نشکن به روش افزودن در راهگاه، پژوهش‌نامه ریخته‌گری،1388، 3(1) 37-43.
[13] Campbell J., Castings, Elsevier Science, 2003.
[14] Alabbasian F., Boutorabi S.M.A., Kheirandish S., Effect of inoculation and casting modulus on the microstructure and mechanical properties of ductile Ni-resist cast iron, Materials Science and Engineering A, 2016, 651, 467–473.
[15] Bockus S., Venckunas A., Zaldarys G., Relation between section thickness, microstructure and mechanical properties of ductile iron castings, Materials Science, 2008, 14(2) 115–118.
[16] Takeda H., Yoneda H., Asano K., Effect of silicon and bismuth on solidification structure of thin wall spheroidal graphite cast iron, Materials Transactions, 2010, 51(1) 176–185.
[17] منشی ا.، انجماد فلزات، نشر ارکان دانش، 1395.
[18] ASM International. Handbook Committee, ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys.
[19] Skaland T., Nucleation mechanisms in ductile iron, AFS cast iron inoculation conference, 2005, 13–30.
[20] Putyra P., Tabor A., Zarkebskic K., Analysis of fracture mechanism in austenitic ductile iron with 30% Ni after impact test, Archives of Foundry Engineering, 2008, 8(4) 193–198.
[21] یوسف‌پور د.، عباسی م.، جواهری م.، اثر منگنز بر ریزساختار انجمادی ‏چدن با گرافیت‌های کروی پژوهش‌نامه ریخته‌گری، 1399، 4(4) 203-213.
[22] Cho G.S., Choe K.H., K.; Lee W., Ikenaga A., Effects of alloying elements on the microstructures and mechanical properties of heavy section ductile cast iron, Journal of Materials Science and Technology, 2007, 23(1) 97–101.
[23] Shinde V.D., Ravi B., Narasimhan K., Effect of orientation, thickness, and composition on properties of ductile iron castings, Materials and Manufacturing Processes, 2013, 28(5) 539–544.
[24] Riposan I., Chisamera M., Stan S., Skaland T., Graphite nucleant (microinclusion) characterization in Ca/Sr inoculated grey irons, International Journal of Cast Metals Research, 2013, 16(1-3) 105-111