Investigation of microstructure and mechanical properties of Al-2Ni-xMn alloys as substitute for hypoeutectic Al-4Ni alloy

Document Type : Original Research Article

Authors

1 MSc Graduated Student, , Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran

2 Associate Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran

3 Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran

10.22034/frj.2021.303426.1138

Abstract

In the current study the microstructure and mechanical properties of Al-2Ni-xMn alloys was investigated as a substitute for Al-4Ni alloys. To this end, different melts containing 2 wt. % Ni and 1, 2, and 4 wt. % Mn were solidified at two cooling rates of 3.5 and 10.4 C/s. According to the results, under the low solidification rate, the tensile strength, fracture strain, and toughness of Al-2Ni-1Mn alloy are lower than those of Al-4Ni alloy by 26, 115, and 137%, respectively. However, further Mn addition impaired the tensile properties. Increasing the solidification cooling rate decreases the size and improves the distribution of Ni(Mn)-rich compounds and porosities within the microstructure and reduces the sizes of secondary dendrite arm spacing and grains. This substantially improved the mechanical properties of Mn-rich alloys. For instance, compared to Al-4Ni alloy solidified at 3.5 C/s, the tensile strength, fracture strain, and toughness of copper mold cast Al-2Ni-1Mn alloy increased by 50, 200, and 330%, respectively.

Keywords

Main Subjects


[1]  Javidani M., Larouche D., Application of cast Al–Si alloys in internal combustion engine components, International Materials Review, 2014, 59(3) 132-158.
[2]  Koutsoukis T., Makhlouf M.M., An alternative eutectic system for casting aluminum alloys: I. casting ability and tensile properties, Light Metals, Edited by Hyland M., TMS (The Minerals, Metals & Materials Society), 2015, 277-282.
[3]  Fan Y., Makhlouf M.M., Castable aluminum alloys for high temperature applications, Materials Science Forum, 2013, 765, 8-12.
[4]  Fan Y., Huang K., Makhlouf M.M. Precipitation strengthening in Al-Ni-Mn alloys. Metallurgical and Materials Transactions A, 2015, 46, 5830-5841.
[5]  Martin J.W., Doherty R.D., Cantor B., Stability of microstructure in metallic systems, Cambridge, UK: Cambridge University press, 1997.
[6]  Ezugwu E.O., High speed machining of aero-engine alloys, Journal of Brazilian Society of Mechanical Science and Engineering, 2004, 26(1) 1-11.
[7]  Mallick P.K., Overview, In Materials, Design and Manufacturing for Lightweight Vehicles, Elsevier, 2010, 1–32.
[8]  Balanetskyy S., Meisterernst G., Grushko B., Feuerbacher M., The Al-rich region of the Al–Mn–Ni alloy system, Part II, Phase equilibria at 620–1000° C, Journal of Alloys and Compounds, 2011, 509(9) 3795-3805.
[9]  Grushko B., Pavlyuchkov D., Mi S.B., Balanetsky S., Ternary phases forming adjacent to Al3Mn. Al4Mn in AlMnTM (TM= Fe, Co, Ni, Cu, Zn, Pd), Journal of Alloys and Compounds, 2016, 677, 148-162.
[10] Taghiabadi R., Ghasemi H.M., Shabestari S.G., Effect of iron-rich intermetallics on the sliding wear behavior of Al–Si alloys, Materials Science and Engineering: A, 2008, 490(1–2) 162–170.
[11]   صفاری ا.، تقی‌آبادی، ر.، بررسی تاثیر بهسازی تبریدی بر ریزساختار و اندیس کیفیت کامپوزیت Al-15Mg2Si، پژوهشنامه ریخته‌گری، 1399، 4(2) 79-87.
[12] Tian L., Guo Y., Li J., Xia F., Liang M., Bai Y., Effects of solidification cooling rate on the microstructure and mechanical properties of a Cast Al-Si-Cu-Mg-Ni piston alloy, Materials, 2018, 11(7) 1230.
[13] Suarez M.A., Figueroa I., Cruz A., Hernandez A., Chavez J.F., Study of the Al-Si-X system by different cooling rates and heat treatment, Materials Research, 2012, 15(5) 763–769.
[14] Yu W., Hao Q., Fan L., Li J., Eutectic solidification microstructure of an Al-4Ni-2Mn alloy, Journal of Alloys and Compounds, 2016, 688(2) 798-803.
[15] Ganjehfard K., Taghiabadi R., Noghani M.T., Ghoncheh M.H., Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si. International Journal of Minerals, Metallurgy and Materials, 28(4), 2020, 718–728.
[16] Balanetsky S., Meisterernst G., Grushko B., Feuerbacher M., The Al-rich region of the Al–Mn–Ni alloy system, Part II, Phase equilibria at 620–1000° C, Journal of Alloys and Compounds, 2011, 509(9) 3795-3805.
[17] Liu, Y., Huang G., Sun Y., Zhang L., Huang. Z, et al., Effect of Mn and Fe on the formation of Fe- and Mn-rich intermetallics in Al–5Mg–Mn alloys solidified under near-rapid cooling, Materials, 2016, 9(2) 88.
[18] Jiang H., Li S., Zhang L., He J., Zhao J., Effect of microgravity on the solidification of aluminum–bismuth–tin immiscible alloys, Npj Microgravity, 2019, 5(1).
[19] Safary E., Taghiabadi R., Ghoncheh M.H., Mechanical properties of Al-15Mg2Si composites prepared under different solidification cooling rates, International Journal of Minerals, Metallurgy, and Materials, 2021.
[20] Liang G., Ali Y., You G., Zhang M.-X., Effect of cooling rate on grain refinement of cast aluminium alloys, Materialia, 2018, 3, 113.
[21] Stefanescu D.M., ASM Handbook, Metals Handbook, Vol. 15, Casting, ASM International, Metals Park, OH, 1988.
[22] Carlson K.D. Lin Z., Beckermann C., Modeling the Effect of Finite-Rate Hydrogen Diffusion on Porosity Formation in Aluminum Alloys, Metallurgical and Materials Transactions B, 2007, 38(4), 541–555.
[23] Yao L., Experimental investigation and numerical modeling of microporosity formation in aluminum alloy A356. Dissertation, The University of British Colombia, Vancouver, 2011.
[24] Moustafa M.A., Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si eutectic alloys, Journal of Materials Processing Technology, 2009, 209(1) 605–610.
[25] Darling K.A., Roberts A.J., Armstrong L., Kapoor D., et al., Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al-Mn alloys, Materials Science and Engineering A, 2014, 589, 57-65.
[26] Morinaga M., Aluminum Alloys and Magnesium Alloys, In a Quantum Approach to Alloy Design, Elsevier, 2019, 95–130.
[27] Shaeri M.H., Shaeri M., Ebrahimi M., Salehi M.Y., Seyyedein S.H., Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy, Progress in Natural Science, Materials International, 2016, 26, 182-191.