Simultaneous Effect of Melt Superheating and Holding Time on Structural ‎Changes, Solidification Characteristics, and Hardness of‏ ‏Al-20Mg2Si-2Cu ‎Composite‎

Document Type : Original Research Article

Authors

1 Assistant Professor, Department of Materials, Chemical and Polymer engineering, Buein Zahra Technical University, Qazvin

2 Professor, Malaysia-Japan International Institute of Technology (MJIIT)

3 Postdoctoral,, University Teknologi Malaysia

10.22034/frj.2022.322231.1147

Abstract

In this study, the effect of melt holding times for 15, 30, and 45 minutes at superheating temperatures of 200, 250, and 300 °C on the phase of Mg2SiP, eutectic Mg2SiE, Al5FeSi, Al5Mg8Si6Cu2, Al2Cu, nucleation temperature of these phases, and the hardness of Al-20Mg2Si-2Cu composite were examined. Microstructural observations and quantitative analysis showed that the best modification was achieved at superheating of 300 °C and a holding time of 15 minutes. Compared with the reference sample with 100 ° C superheating, the dendritic and coarse morphology of Mg2SiP particles changed to the fine polyhedral. The average particle size decreased dramatically from 1179 to 255.5 μm. Particle area and aspect ratio decreased by 83% and 13%, respectively. The number of particles per unit area increased from 9 to 57. Superheating converted the needle β-Fe to the β α-Fe Chinese script, although no significant change in the features of the Mg2SiE, Al5Mg8Si6Cu2, and Al2Cu phases was observed. A good correlation was found between the nucleation temperature and the microstructural transformation of the Mg2SiP phase. After implementing superheating of 300 °C for 15 minutes, the nucleation temperature of the Mg2SiP phase increased from 647.3 to 664.4 °C. The superheating treated composites showed higher hardness than the reference specimen, regardless of temperature and time. The highest hardness was obtained with 82.1 Vickers, which could be attributed to increasing the number of particles and reducing the distance between particles.

Keywords

Main Subjects


[1]  Wu X. F., Wang Z. C., Wang K. Y., Zhao R. D., Wu F. F., Microstructural refinement and tensile properties enhancement of Al-10Mg2Si cast alloys by copper addition, Journal of Alloys and Compounds, 2021, 163058.
[2]  Tong X., Zhang D., Wang K., Lin J., Liu Y., Shi Z., Li Y., Lin J., Wen C., Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites, Materials Science and Engineering: A, 733, 2018, 9–15.
[3]  Jiang W., Xu X., Zhao Y., Wang Z., Wu C., Pan D., Meng Z., Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite, Materials Science and Engineering: A, 721, 2018, 263–273.
[4]  Jin Y., Fang H., Wang S., Chen R., Su Y., Guo J., Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al–Mg2Si composites, Materials Science and Engineering: A, 831, 2022, 142227.
[5]  Zhao Y. G., Qin Q. D., Hang Y. H., Zhou W., Jiang Q. C., In-situ Mg2Si/Al-Si-Cu composite modified by strontium, Journal of Materials Science, 40, 2005, 1831–1833.
[6]  Qin Q. D., Zhao Y. G., Liu C., Cong P. J., Zhou W., Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite, Journal of Alloys and Compounds, 454, 2008, 142–146.
[7]  Tang P., Yu F., Teng X., Peng L., Wang K., Effect of beryllium addition and heat treatment on the microstructure and mechanical properties of the 15%Mg2Si/Al-8Si composite, Materials Characterization, 180 (2021) 111416.
[8]  R. Hadian, M. Emamy, N. Varahram, N. Nemati, The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite, Materials Science and Engineering A, 490, 2008, 250–257.
[9]  Nordin N. A., Farahany S., Abu Bakar T. A., Hamzah E., Ourdjini A., Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al-20%Mg<inf>2</inf>Si-xCe in situ composite solidified at a slow cooling rate, Journal of Alloys and Compounds, 650, 2015.
[10] Farahany S., Ghandvar H., Bozorg M., Nordin A., Ourdjini A., Hamzah E., Role of Sr on microstructure, mechanical properties, wear and corrosion behaviour of an Al–Mg2Si–Cu in-situ composite, Materials Chemistry and Physics, 239, 2020, 121954.
[11] Ghandvar H., Idris M. H., Ahmad N., Emamy M., Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15%Mg2Si in-situ composite, Materials Characterization, 135, 2018, 57–70.
[12] Nasiri N., Emamy M., Malekan A., Norouzi M. H., Microstructure and tensile properties of cast Al–15%Mg2Si composite: Effects of phosphorous addition and heat treatment, Materials Science and Engineering: A, 556 (2012) 446–453.
[13] Khorshidi R., Honarbakhsh Raouf A., Emamy M., Campbell J., The study of Li effect on the microstructure and tensile properties of cast Al–Mg2Si metal matrix composite, Journal of Alloys and Compounds, 509, 2011, 9026–9033.
[14] Yu H. C., Wang H. Y., Chen L., Zha M., Wang C., Li C., Jiang Q. C., Spheroidization of primary Mg2Si in Al-20Mg2Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process, Materials Science and Engineering: A, 685, 2017, 31–38.
[15] YANG C., LI Y., DANG B., LÜ H., LIU F., Effects of cooling rate on solution heat treatment of as-cast A356 alloy, Transactions of Nonferrous Metals Society of China, 25, 2015, 3189–3196.
[16] Du J., Iwai K., Modification of Primary Mg<SUB>2</SUB>Si Crystals in Hypereutectic Mg-Si Alloy by Application Alternating Current, MATERIALS TRANSACTIONS, 50 (2009) 562–569.
[17] میرک ع. ر.، قدسی م.، برسی اثر دمای ریختگی بر ریزساختار و خواص کششی گرم سوپرآلیاژ پایه آهن -نیکل, مهندسی متالورژی 21،2018، 108–117.
[18] Yin F. S., Sun X. F., Li J. G., Guan H. R., Hu Z. Q., Effects of melt treatment on the cast structure of M963 superalloy, Scripta Materialia, 48, 2003, 425–429.
[19] Cui H., Tan Y., Bai R., Li Y., Zhao L., Zhuang X., Wang Y., Chen Z., Li P., You X., Cui C., Effect of melt superheat treatment on solidification behavior and microstructure of new Ni–Co based superalloy, Journal of Materials Research and Technology, 15, 2021, 4970–4980.
[20] Pang S., Wu G. H., Liu W. C., Zhang L., Zhang Y., Conrad H., Ding W. J., Influence of pouring temperature on solidification behavior, microstructure and mechanical properties of sand-cast Mg-10Gd-3Y-0.4Zr alloy, Transactions of Nonferrous Metals Society of China, 25, 2015, 363–374.
[21] Wang Q., Geng H., Zhang S., Jiang H., Zuo M., Effects of Melt Thermal-Rate Treatment on Fe-Containing Phases in Hypereutectic Al-Si Alloy, Metallurgical and Materials Transactions A, 45, 2014, 1621–1630.
[22] Ahmadt R., Marshall R. I., Effect of superheating on iron-rich plate-type compounds in aluminium-silicon alloys, International Journal of Cast Metals Research, 15, 2003.
[23] Li P., Nikitin V. I., Kandalova E. G., Nikitin K. V., Effect of melt overheating, cooling and solidification rates on Al–16wt.%Si alloy structure, Materials Science and Engineering: A, 332, 2002, 371–374.
[24] Dai H. S., Liu X. F., Refinement performance and mechanism of an Al-50Si alloy, Materials Characterization, 59, 2008, 1559–1563.
[25] Qin Q. D., Zhao Y. G., Liang Y. H., Zhou W., Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite, Journal of Alloys and Compounds, 399, 2005, 106–109.
[26] Shabestari S. G., Ashkvary S., Yavari F., Assessment of the Microstructure and Solidification Characteristics of Al–20%Mg2Si Composite under Melt Superheating Treatment Using Thermal Analysis, IUST, 18, 2021, 1–9.
[27] Zhang J., Fan Z., Wang Y. Q., Zhou B. L., Equilibrium pseudobinary Al - Mg2Si phase diagram, Materials Science and Technology, 17, 2001.
[28] Abouei V., Shabestari S. G., Saghafian H., Dry sliding wear behaviour of hypereutectic Al–Si piston alloys containing iron-rich intermetallics, Materials Characterization, 61, 2010, 1089–1096.
[29] Narayanan L. A., Samuel F. H., Gruzleski J. E., Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy, Metallurgical and Materials Transactions A, 25, 1994.
[30] Taylor J. A., Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Materials Science, 1, 2012, 19–33.
[31] Tebib M., Samuel A. M., Ajersch F., Chen X. G., Effect of P and Sr additions on the microstructure of hypereutectic Al–15Si–14Mg–4Cu alloy, Materials Characterization, 89, 2014, 112–123.
[32] Kral M. V., Nakashima P. N. H., Mitchell D. R. G., Electron microscope studies of AI-Fe-Si intermetallics in an AI-11 Pct Si alloy, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37, 2006.
[33] Rosefort M., Matthies C., Buck H., Koch H., Using SEM and EDX for a simple differentiation of α- and β-AlFeSi-phases in wrought aluminum billets, in: TMS Light Metals, 2011.
[34] Yang W., Yang X., Ji S., Melt superheating on the microstructure and mechanical properties of diecast Al-Mg-Si-Mn alloy, Metals and Materials International, 21, 2015382–390.
[35] Xu J., Fan D., Zhang T., The effect of superheat on the nucleation undercooling of metallic melts, in: Mathematical Methods in the Applied Sciences, 2021.
[36] Jie Z., Zhang J., Huang T., Liu L., Fu H., The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy, Journal of Alloys and Compounds, 706, 2017.
[37] Deev V., Prusov E., Ri E., Prihodko O., Smetanyuk S., Chen X., Konovalov S., Effect of melt overheating on structure and mechanical properties of Al-Mg-Si cast alloy, Metals, 11, 2021.
[38] Farahany S., Nordin N. A., Ghandvar H., Cooling curve thermal analysis of Al–Mg2Si–Cu–xSr composite, Journal of Thermal Analysis and Calorimetry, 2019.
[39] Nordin N. A., Farahany S., Abu Bakar T. A., Hamzah E., Ourdjini A., Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al–20%Mg2Si–xCe in situ composite solidified at a slow cooling rate, Journal of Alloys and Compounds, 650, 2015, 821–834.
[40] اشکواری س.، شبستری س.، بررسی اثرات دمای ذوب بر رفتار انجمادی کامپوزیت درجا ‏Al-Mg2Si‏ به روش آنالیز حرارتی، پژوهشنامه ریخته‌گری، 2020، 4، 1–9.
[41] Sameezadeh M., Emamy M., Farhangi H., Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites, Materials & Design, 32, 2011, 2157–2164.