Effect of the Ablation Casting Binder Type on Improving the Tensile Strength ‎of A356 Aluminum Alloy ‎

Document Type : Original Research Article

Authors

1 PhD Student, School of Metallurgy and Materials Engineering, Iran University of Science and Technology,, Tehran

2 Assistant Professor ,Chemical and Materials Engineering, Department, Sirjan University of Technology

10.22034/frj.2022.327195.1150

Abstract

 
This research investigated the cooling curves and tensile test results of three casting methods: conventional CO2 sand casting (CSC), ablation casting with a water-soluble binder (ABL), and Ablation casting with Na2SiO3 binder (DWS). With the as-cast CSC samples, the σUTS and εf were 125 MPa and 3%, respectively which were promoted by the DWS process to 193 MPa and 11.5 %, respectively. The ABL process could increase the σUTS and εf to 210 MPa and 19 %, respectively. According to metallography examinations, the SDAS of α-Al dendrites decreased from 80µm in CSC to 40µm in DWS and 20µm in ABL. Ablation with a water-soluble binder had the most effect on tensile mechanical properties as it provided the highest cooling rate (1.2 °C/s) comparing to the two other processes. The differences between these two Ablation procedures were 50% in SDAS and 65% in εf, while 13% with respect to σUTS. Prior researches attributed these enhancements to the α-Al dendrites SDAS affected by the high cooling rate experienced. The DWS results, however, reveal a research gap indicating the participation of other factors besides merely the α-Al dendrites in improvement of the mechanical properties in Al-Si alloys.

Keywords

Main Subjects


1[      Kaufman JG., Rooy EL., Aluminum alloy castings: Properties, Processes, and Applications, 2004.
]2[     Campbell J., Complete casting handbook: Metal casting processes, Techniques and Design, 2015, 2nd Edition.
[3]     بوترابی س. م.ع.، کزازی غ.، مصلح ب.، نفیسی ش.، نگرشی نوین بر سیستم‌های راهگاهی، مرکز تحقیقات ریخته‌گری، دانشگاه علم و صنعت ایران، چاپ سوم، 1386.
]4[     Ghoncheh M.H,  Godratnama Shabestari S., Abbasi M.H., Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique, Journal of Thermal Analysis and Calorimetry, 2014.
]5[     Godratnama Shabestari S., Malekan M., Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy, Canadian Metallurgical Quarterly, 2005, 44(3), 305-312.
]6[     Jinugu BR., Inampudi NM., Microstructure, SDAS and mechanical properties of A356 alloy castings made in sand and granulated blast furnace slag moulds, Archives of Foundry Engineering, 2017,17(1) 179-191.
]7[     Choi S.H., Barlat F. & Liu J., Effect of precipitates on plastic anisotropy for polycrystalline aluminum alloys, Metallurgical and Materials Transactions A, 2001, 32 (2239).
]8[     Easton M., Davidson C., John S.D., Effect of alloy composition on the dendrite arm spacing of multicomponent aluminum alloys, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41(6) p1528-1538.
]9[     Patel MGC., Krishna P., Parappagoudar M.B., Prediction of secondary dendrite arm spacing in squeeze casting using fuzzy logic based approaches, Archives of Foundry Engineering, 2015, 15(1) 51-68.
]10[   Godratnama Shabestari S., Moemeni H., Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys, Journal of Materials Processing Technology, 2004, 153-154 (1-3), 193-198.
]11[   Hosseini VA., Godratnama Shabestari S., Gholizadeh R., Study on the effect of cooling rate on the solidification parameters, microstructure and mechanical properties of LM13 Alloy using cooling curve thermal analysis technique, Materials and Design, 2013, 50 7-14.
]12[   Santhi S., Sakri SB., Rao DH., Sundarrajan S., Estimation of shrinkage porosity of a cast aluminium alloy, Journal on Mechanical Engineering, 2018, 2, 19-25.
]13[   Uludağ M., Cetin R., Gemi L., et al, Change in porosity of A356 by holding time and its effect on mechanical properties, Journal of Materials Engineering and Performance, 2018, 27, 5141–5151.
]14[   Dahle A.K., John St.D.H., Rheological behaviour of the mushy zone and its effect on the formation of casting defects during solidification. Acta Materialia, Elsevier Science, 1998, 47(1) 31-41.
]15[   Nicoletto G., Anzelotti G., Konečná R., X-ray computed tomography vs. metallography for pore sizing and fatigue of cast Al-alloys, Procedia Engineering, 2010, 2(1)
547-554.
]16[   Grassi J., Campbell J., Hartlieb M., Major F., The ablation casting process, Materials Science Forum, 2009, 618-619, p591-594.
]17[   Salarvand M., Boutorabi S.M.A., Pourgharibshahi M. et al., Effect of cooling rate on the microstructure and mechanical properties of high-zinc AA 5182 aluminum wrought alloy cast by the ablation green sand mold casting process, International Journal of Metalcasting, American Foundry Society, February 2021.
]18[   Heidari E., Boutorabi S.M.A., Honaramooz M.T., et al, Ablation casting of thin-wall ductile iron, International Journal of Metalcasting, American Foundry Society, 2021.
]19[   Boutorabi S.M.A., Torkaman P., Campbell J., et al., Structure and properties of carbon steel cast by the ablation process, International Journal of Metalcasting, American Foundry Society, 2021, 15(1)306-318.
]20[   Sui D., Han Q., Modeling ablation casting, International Journal of Metalcasting, 2022, 16, 132-142.
]21[   Dudek P., Fajkiel A., Reguła T., The research on the ablation casting technology for Aluminium alloys, Solid State Phenomena, 2014, 223 70-77.
]22[   Taghipourian M., Mohammadaliha M., Boutorabi S.M.A., et al., The effect of waterjet beginning time on the microstructure and mechanical properties of A356 aluminum alloy during the ablation casting process, Journal of Materials Processing Technology, 2016, 238 89-95.
]23[   Bohlooli V., Mahalli M.S., Boutorabi S.M.A., Effect of ablation casting on microstructure and casting properties of A356 aluminium casting alloy, Acta Metallurgica Sinica (English Letters), 2013, 26(1) 85-91.
]24[   Kheirabi A., Divandari M., Boutorabi S.M.A., et al., Effect of the modified ablation casting process on the mechanical properties and microstructure of near eutectic Ai-Si alloy, International Journal of Metalcasting, American Foundry Society, May 2021.
]25[   Backerud L., Chai G., Tamminen J., Solidification characteristics of Aluminum alloys, American Foundrymen’s Society, INC., Foundry Alloys, 1990, 2 266.
]26[   Baghani A., Kheirabi A., Bahmani A., et al., Reducing melt surface turbulence by employing surge and filter in a conventional non-pressurizing gating system: simulation and experiment, Archives of Metallurgy and Materials, 2021, 66(2) 397-405.
[27]   بوترابی س.م.ع.، حمزه‌لو ح.، مفاهیم جدید در فناوری‌های ذوب و ریخته‌گری، دانشگاه علم و صنعت ایران, 1389.
]28[   Yousefian P., Tiryakioğlu M., Pore formation during solidification of Aluminum: reconciliation of experimental observations, modeling assumptions, and classical nucleation theory, Metallurgical and Materials Transactions A, 2018, 49(2) 563-575.
]29[   Stefanescu DM., Catalina A.V., Physics of microporosity formation in casting alloys–sensitivity analysis for
Al–Si alloys, International Journal of Cast Metals Research, 2011,  24 (3-4) 144-150.
[30]   Pourgharibshahi M., Divandari M., Saghafian H., Timelli G., Eutectic nucleation in 7xxx series aluminum alloys from a non-classical viewpoint, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(9) 4572–4583.
[31]   Pourgharibshahi M., Divandari M., Sagha H., Ashtari P., Controlled diffusion solidification processing : a review, Journal of Materials Processing Technology, 2017, 250 (January) 203–219.
[32]        E. Barbarias, Niklas A., Lizarralde I., Garat M., Bakedano A., and Fernández-Calvo A.I., Ablation technology applied to A356 alloys compared with conventional casting processes, Materials Science And Engineering A, 2022, 833(October 2021).