Effect of Melt Shearing Time by Vertical Spiral Stirrer on Hot Tearing ‎Behavior of A206 Alloy

Document Type : Original Research Article

Authors

1 M.Sc. Student, Department of Materials Science and Engineering, School of Engineering, Meybod University, Meybod, Yazd, Iran

2 Associate Professor, Department of Materials Science and Engineering, School of Engineering, Meybod University, Meybod, Yazd, Iran, 8961699557

3 Assistant Professor,, Institute of Materials and Energy, Isfahan, Iran,

4 Assistant Professor, Department of Materials Science and Engineering, School of Engineering, Meybod University, Meybod, Yazd, Iran

10.22034/frj.2023.388455.1174

Abstract

In casting, one way to reduce hot tearing is by modifying the microstructure. In this study, the microstructure of A206 alloy was modified using a melt shearing process at various times, and the effect of melt shearing time on hot tearing behaviour was analyzed. A steel chamber with two baffles and a spiral stirrer was used to apply shear stress to the melt. The sheared melt was then cast in a graphite mold in the form of a constrained rod, and optical and SEM microscopes were utilized to investigate grain size. To evaluate the susceptibility to hot tearing, the quantity of crack length density was used as a criterion. The results revealed that melt shearing process reduces the size of shrinkage pores, making it harder to initiate hot tearing, and increases the alloy's resistance against hot tearing. Also, due to decreasing the size of shrinkage pores, the ultimate strength is increased up to 57%. As the melt shearing time increased up to 3 minutes, the as-cast microstructure became less uniform; however, after 3 minutes, the microstructure became significantly more uniform. Additionally, the grain size decreased up to 37%, and the rate of this decrease accelerated after 3 minutes, leading to an increase in resistance to hot tearing. The decrease in grain size due to melt shearing caused an increase in the number of grain boundaries and a reduction in the thickness of the grain boundary precipitation layer, resulting in a softer behaviour observed on the fracture surface.

Keywords

Main Subjects


[1] Suyitno D.G., Eskin L., Katgerman, Structure observations related to hot tearing of Al–Cu billets produced by direct-chill casting, Mater. Sci. Eng., A, 2006, 420, 1-7.
[2] Pulisheru K. S., Birru A. K., Effect of pouring temperature on hot tearing susceptibility of Al-Cu cast Alloy: Casting simulation, Mater. Today, Proc., 2021, 47, 7086-7090.
[3] Fan Z., Li C., Yang H., Liu Z., Effects of TiC nanoparticle inoculation on the hot-tearing cracks and grain refinement of additively-manufactured AA2024 Al alloys, J. Mater. Res. Technol., 2022, 19, 194-207.
[4] Sistaninia M., Terzi S., Phillion A.B., Drezet J.M., Rappaz M., 3D granular modeling and in situ X-ray tomographic imaging: A comparative study of hot tearing formation and semi-solid deformation in Al–Cu alloys, Acta Mater., 2013, 61, 3831-3841.
[5] Lin S., Aliravci C., Pekguleryuz M.O., Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining, metal. Mater. Trans., 2007 (A) 38, 1056-1068.
[6] Li M., Wang H., Wei Z., Zhu Z., The effect of Y on the hot-tearing resistance of Al–5 %wt. Cu based alloy, Mate. Des. 31, 2010, 2483–2487.
[7] Han J-q., Wang J-s., Zhang M-s., Niu K-m., Relationship between amounts of low-melting-point eutectics and hot tearing susceptibility of ternary Al−Cu−Mg alloys during solidification, Trans. Nonferrous Met. Soc. China, 2020, 30, 2311−2325.
[8] Luo L., Luo L., Su Y., Su L., Wang L., Chen R., Guo J., Fu H., Reducing porosity and optimizing performance for
Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification, J. Mater. Sci. Technol., 2021, 79, 1–14.
[9] Luo L., Luo L., Ritchie R.O., Su Y., Wang B., Wang L., Chen R., Guo J., Fu H., Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification, J. Mater. Sci. Technol., 2021, 61, 100-113.
[10] D U.M., Wang, F., Du, X. et al. Effects of Alternating magnetic field on the hot tearing susceptibility and microstructure of Al-5Cu alloy. Inter Metal Cast, 2022.
[11] Liu X., Guo Z., Xue J., Zhu C., Zhang P., Li X., Microstructures and mechanical properties of the Al-Cu-Sc alloys prepared by ultrasound-assisted molten salt electrolysis, J. Alloys Compd., 2020, 818, Article 152870.
[12] Li F., Shi D., Hu X., Yin F., Zhang J., Sun B., Effect of concentration-gradient on characteristic parameters of α-Al dendrites in Al-Cu alloy, J. Alloys Compd., 2021, 889, Article 161666.
[13] Zuo Y., Jiang B., Enright P., Scamans G.M., Fan Z., Degassing of LM24 Al alloy by intensive melt shearing, nt. J. Cast Met. Res., 2011, 24, 307-313.
[14] Zuo Y., Li H., Xia M., Jiang B., Scamans G.M., Fan Z., Refining grain structure and porosity of an aluminum alloy with intensive melt shearing, Scr. Mater., 2011, 64, 209–212.
[15] Lazaro-Nebreda J., Patel J.B., Fan Z., Improved degassing efficiency and mechanical properties of A356 aluminum alloy castings by high shear melt conditioning (HSMC) technology, J. Mater. Process. Technol., 2021, 294, article 117146.
[16] Sree-Manu K.M., Barekar N.S., Lazaro-Nebreda J., Patel J.B., Fan Z., In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach J. Mater. Process. Technol., 2021, 295, article 117170.
[17] Kolahdooz A., Aminian-Dehkordi S., Effects of important parameters in the production of Al-A356 alloy by
semi-solid forming process, j mater. Res. Technol., 2019, 8, 189-198.
[18] نوروزی س، بخشی جویباری م، کلاهدوز ا، حسینی‌پور س.ج، تأثیر دما روی ریزساختار آلیاژ ریخته­گری نیمه­جامد روی سطح شیبدار خنک­کننده، فصلنامه مکانیک هوافضا (ساخت و تولید)، 1392، 3، 55-63 .
[19] راکی ن.، کلاهدوز ا.، بررسی عاملی روش ریخته‌گری سطح شیب‌دار خنک شونده بر ریزساختار و مقادیر سختی آلیاژ آلومینیمA356، پژوهشنامه ریخته­گری، 1397، 2، 109-121.
[20] دل­شکسته ن.، کلاهدوز ا.، بررسی آماری ریزساختار و سختی آلیاژ آلومینیم نیمه جامد A380 تولید شده به روش ارتعاش مکانیکی در محیط گاز آرگون، پژوهشنامه ریخته­گری، 1397، 2، 275-286.
[21] Hatch JE. Aluminum properties and physical metallurgy. ASM: Second Ed; 1984.
[22] Campbell J., Castings, Butterworth-Heinemann, 2003.
[23] Eskin D.G., Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminum alloys, Progress in Materials Science, 2004, 49, 629–711.
[24] Men H., Jiang B., Fan Z., Mechanisms of grain refinement by intensive shearing of AZ91 alloy melt, Acta Materialia, 2010, 58.
[25] Patel J.B., Yang X., Mendis C.L., et al. Melt conditioning of light metals by application of high shear for improved microstructure and defect control, j Miner. Met. Mater. Soci., 2017, 69.