Investigation of Effect of Mold Mechanical Vibration During ‎Solidification on the Structure ‎and Corrosion Resistance of ‎ Zn-4Si Alloy

Document Type : Original Research Article

Authors

1 Department of Metallurgy and Materials Science, Faculty of Engineering, Imam Khomeini International University, Qazvin, IRAN

2 Associate Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, IRAN

3 Ph.D student, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, IRAN‎

10.22034/frj.2023.390435.1175

Abstract

In the current study the effect of mold mechanical vibration during the solidification was studied on microstructure and corrosion behavior of Zn-4Si composite. According to the microstructural observation results, mechanical vibration substantially improved the SiP particle distribution and refined them. The image analysis results showed that mechanical vibration at 20, 40, and 60 Hz reduced the average size of SiP particles by 34, 55, and 75%, and increased their number density by 6, 16, and 36 times, respectively. Mechanical vibration at the 20, 40, and 60 Hz also decreased the average grain size by 50, 68, and 76%, respectively and increased the equiaxed zone in castings. The results of Tafel and impedance corrosion tests at 3.5 wt. % NaCl solution implied on increasing the corrosion current and shifting the corrosion potential to the more negative values in mechanically vibrated samples. The corrosion current of as-cast and 60 Hz samples were determined as -1.3610-5 and -2.3310-5 A, respectively. Mechanical vibration also reduces the corrosion resistance of samples where the resistance of 60 Hz sample (about 76 ohm) is lower than that of as-cast sample by about 45%. The increased density of grain boundaries and fine distribution of primary Si particles (as cathodic points) in the composite matrix are characterized as the most important factors decreasing the corrosion resistance of the composite. This is because they increased the number and interspacing of the galvanic cells within the matrix and exhibited appropriate locations for pitting.

Keywords

Main Subjects


  1. Pola A., Tocci M., Goodwin F.E., Review of microstructures and properties of zinc alloys, Metals, 2020, 10(2) 253.
  2. Kabir H., Muni K., Wen C., Li Y., Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives, Bioactive Materials, 2021, 6(3) 836–879.
  3. Zhuo X., Wu Y., Ju J., et al., Recent progress of novel biodegradable zinc alloys: from the perspective of strengthening and toughening, Journal of Materials Research and Technology, 2022, 17, 244–269.
  4. Rajabi F., Taghiabadi R., Shaeri. M.H., Tribology of Si-rich TIG-deposited coatings on Zn–40Al–2Cu alloy, Surface Engineering, 2020, 36(7) 735–744.
  5. Yousefi D., Taghiabadi R., Shaeri M.H., et al., Microstructural evolution and mechanical properties of multi-directionally forged SiP/ZA22 composite, Archives of Civil and Mechanical Engineering, 2020, 20(4)
  6. Chirita G., Stefanescu I., Soares D., et al., Influence of vibration on the solidification behaviour and tensile properties of an Al–18wt%Si alloy, Materials & Design, 2009, 30(5) 1575–1580.
  7. دماوندی س.، نوروزی م.، ربیعی.، اثر دمای بارریزی، ارتعاش مکانیکی و گرمایش مجدد بر ریزساختار و خواص مکانیکی آلیاژ ریختگی Al-A390، پژوهش نامه ریخته گری، 1397، 2(1)، 53-39.
  8. صفاری ش.، اخلاقی ف.، بررسی تاثیر اعمال ارتعاش مکانیکی روی سطح شیبدار بر ریزساختار کامپوزیت درجای Al-Mg2Si، دومین همایش بین المللی و هفتمین همایش مشترک انجمن مهندسین متالورژی و انجمن علمی ریخته گری ایران، دانشگاه سمنان، سمنان، ایران،1392.
  9. دلشکسته ن.، کلاهدوز ا.، بررسی آماری ریزساختار و سختی آلیاژ آلومینیم نیمه جامد A380 تولید شده به روش ارتعاش مکانیکی در محیط گاز آرگون، پژوهش نامه ریخته گری، 1397، 2(4)، 286-275.
  10. Garg P., Jamwal A., Kumar D., et al., Advance research progresses in aluminium matrix composites: manufacturing & applications, Journal of Materials Research and Technology, 2019, 8(5) 4924–4939.
  11. El-Aziz K. A., Saber D. Sallam H. E.-D.M., Wear and corrosion behavior of Al–Si matrix composite reinforced with alumina, Journal of Bio- and Tribo-Corrosion, 2015, 1(1) https://doi.org/10.1007/s40735-014-0005-5
  12. Taghiabadi R., Fayegh A., Pakbin A., Nazari M., Ghoncheh M. H., Quality index and hot teraing succeptibility of Al-7Si-0.35Mg-xCu alloys, Transactions of Non-ferrous Metals Society of China, 2018, 28(7) 1275-1286.
  13. Olesinski R. W., Abbaschian. G.J., The Si-Zn (Silicon-Zinc) system, Bulletin of Alloy Phase Diagrams, 1985, 6(6) 545–548.
  14. Guan R.-G., Tie. D., A Review on Grain Refinement of Aluminum Alloys: Progresses, Challenges and Prospects, Acta Metallurgica Sinica (English Letters), 2017, 30(5) 409–432.
  15. یداله تبار ح.، ثقفیان ح.، شبستری س.، بررسی تاثیر ارتعاشات مکانیکی حین انجماد بر خواص مکانیکی و ریزساختار آلیاژ آلومینیم A380، نشریه بین المللی علوم مهندسی دانشگاه علم و صنعت ایران، ویژه نامه مهندسی متالورژی و مواد، 1387، 19(5)، 74-65.
  16. Yoshitake Y., Yamamoto K., Sasaguri N., Era H., Refinement of primary Si grains of Al–21%Si alloy using vibration mold, Materials Transactions, 2020, 61(2) 355–360.
  17. Zhang Z., Li H. -T. Stone I. C., Fan Z., Refinement of primary Si in hypereutectic Al-Si alloys by intensive melt shearing, IOP Conference Series: Materials Science and Engineering, 2012, 27, 1-6.
  18. Ünal N., Çamurlu H. E., Koçak., S., Düztepe G., Effect of external ultrasonic treatment on hypereutectic cast aluminium–silicon alloy, International Journal of Cast Metals, 2012, 25(4) 246–250.
  19. Jiandon P., Talangkun S., Microstructural modification mardness and surface roughness of hypereutectic Al-Si alloys by a combination of bismuth and phosphorus, Crystals, 2022, 12(8) 1026
  20. Chankitmunkong S., Eskin D. G., Limmaneevichitr C., Structure refinement, mechanical properties and feasibility of deformation of hypereutectic Al–Fe–Zr and Al–Ni–Zr alloys subjected to ultrasonic melt processing, Materials Science and Engineering A, 2020, 788, 139567.
  21. Chirita G., Stefanescu I., Soares D., Silva F. S., Influence of vibration on the solidification behaviour and tensile properties of an Al–18wt%Si alloy, Materials & Design, 2019, 30(5) 1575–1580.
  22. O., Khmeleva M., Danilov P., Dammer V., Vorozhtsov A., Eskin D., Optimizing the conditions of metal solidification with vibration, Metals, 2019, 9(3) 366.
  23. Plotkowski A. J., Refinement of the cast microstructure of hypereutectic aluminum-silicon alloys with an applied electric potential, 2012, Masters Theses, 15.
  24. Baboian R. Corrosion tests and standards: Application and interpretation, ASM International, USA, 2005.
  25. K. D., Birbilis N., Effect of grain size on corrosion: A Review Corrosion, 2010, 66(7) 075005-075005–075013.
  26. Ralston K.D., Fabijanic D., Birbilis N., Effect of grain size on corrosion of high purity aluminium, Electrochimica Acta, 2011, 56(4) 1729–1736.
  27. Jun Tao., Surface composition and corrosion behavior of an Al-Cu alloy, Chemical Physics, 2016, Université Pierre et Marie Curie - Paris VI.
  28. Ahmido A., Hajjaji S.E., Ouaki B., et al., Corrosion behavior of Sn-9Zn-xBi lead-free solder alloy in NaCl 3% solution, Materials Science an Indian Journal, 2015, 13(2) 69-76.
  29. Zeng F., Wei Z., Li J., et al., Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys, Transactions of Nonferrous Metals Society of China, 2011, 21(12) 2559–2567.
  30. Zhu Y,, Frankel G,S,, (Bland) Miller L,G,, Garves J,, Pope J,, (Warner) Locke J,, Electrochemical Characteristics of Intermetallic Phases in Al–Cu–Li Alloys, Journal of The Electrochemical Society, 2023, 170(2) 021502.
  31. Jiang J., Ma A., Song D., et al., Corrosion behavior of hypereutectic Al-23%Si alloy (AC9A) processed by severe plastic deformation, Transactions of Nonferrous Metals Society of China, 2010, 20(2) 195–200.
  32. Pei Y., Gui Y., Huang T., et al., Microstructure and corrosion behaviors of AZ63 magnesium alloy fabricated by accumulative roll bonding process, Materials Research Express, 2020, 7(6) 066525.
  33. Korchef A., Kahoul A., Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing, International Journal of Corrosion, 2013, 1–11.
  34. Wei W., Wei K.X., Du Q.B., Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding, Materials Science and Engineering, 2007, A, 454–455, 536–541.
  35. Naeini M.F., Shariat M.H., Eizadjou M., On the chloride-induced pitting of ultrafine grains 5052 aluminum alloy produced by accumulative roll bonding process, Journal of Alloys and Compounds, 2011, 509(14) 4696–4700.
  36. Li H., Liu S., Sun F., et al., Preliminary investigation on underwater wet welding of Inconel 625 alloy: microstructure, mechanical properties and corrosion resistance, Journal of Materials Research and Technology, 2022, 20, 2394–2407.