Effect of Severe Plastic Deformation on Mechanical Properties and Microstructure of A520 Al-Alloy Produced by Semisolid and Ordinary Casting

Document Type : Original Research Article

Authors

1 Material Science Department, Engineering Faculty, Imam Khomeini International University (IKIU), Qazvin, Iran

2 Department of Metallurgy and Materials Engineering, Imam Khomeini International University (IKIU), Qazvin, Iran

Abstract

In the current research, the effect of severe plastic deformation by multi-directional forging (MDF) and equal channel angular pressing (ECAP) on microstructure and mechanical properties of A520 Al-alloy was investigated. The samples which produced by ordinary and semisolid casting were processed by ECAP and MDF at room temperature (RT) and high temperature. The semi-solid process improved the formability of the alloy, such that the semi-solid specimens were ECAP and MDF processed up to 3 passes at RT without cracking, while the ordinary cast specimens were cracked at the first pass of MDF and ECAP processes at RT. The micro-hardness and shear punch tests showed increase the mechanical properties of the specimens, such that 3 passes of MDF and ECAP at RT increased the hardness of specimens from 60 to 128 and 137 HV and yield strength of specimens from 128 to 208 and 255 MPa, respectively. By increasing the ECAP temperature, the effect of ECAP on improvement of mechanical properties decreased considerably. The microstructural characterization by scanning electron microscope showed that the reason of mechanical properties improvement during ECAP and MDF processes lied in the grain refinement and modification of morphology and distribution of Al3Mg2, Mg2Si and AlFe precipitates during the processes. Comparison of ECAP and MDF processes revealed that the effect of ECAP process on microstructural modification and consequently improvement of mechanical properties was higher than that of MDF process.

Keywords

Main Subjects


[1] Nourouzi S., Ghavamodini S.M., Baseri H., Kolahdooz A., Botkan M., Microstructure evolution of A356 aluminum alloy produced by cooling slope method, Advanced Materials Research, 2012, 402, 272-276.
[2] Kolahdooz A., Nourouzi S., Bakhshi-Jooybari M., Hosseinipour S.J., Experimental investigation of thixoforging parameters effects on the microstructure and mechanical properties of the helical gearbox cap, Journal of Mechanical Science and Technology, 2014, 28(10) 4257-4265.
[3] Kolahdooz A., Nourouzi S., Bakhshi-Jooybari M., Hosseinipour S.J., Experimental investigation of the effect of temperature in semisolid casting using cooling slope method, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2016, 230 (4) 316-325.
[4] Kund N. K., Dutta P., Numerical simulation of solidification of liquid aluminum alloy flowing on cooling slope, Transactions of Nonferrous Metals Society of China, 2010, 20, 898-905.
[5] Kazemi A., Nourouzi S., Kolahdooz a., Gorji A., Experimental investigation of thixoforging process on microstructure and mechanical properties of the centrifugal pump flange, Journal of Mechanical Science and Technology, 2015, 29(7) 2957-2965.
[6] Nourouzi S., Baseri H., Kolahdooz A., Ghavamodini S.M., Optimization of semi-solid metal processing of A356 aluminum alloy, Journal of Mechanical Science and Technology, 2013, 27(12) 3869-74.
[7] Nourouzi S., Kolahdooz A., Botkan M., Behavior of A356 Alloy in semi-solid state produced by mechanical stirring, Advanced Materials Research, 2012, 402, 331-336.
[8] Valiev R.Z., Estrin Y., Horita Z., Langdon T.G., Producing bulk ultrafine grained materials by severe plastic deformation, JOM, 2006, 58(4) 33-39.
[9] Lowe T.C., Valiev R.Z., The use of severe plastic deformation techniques in grain refinement, JOM, 2004, 56(10) 64-68.
[10] Valiev R.Z., Langdon T.G., Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 2006, 51 881-981.
[11] Xu C., Langdon T.G., Influence of a round corner die on flow homogeneity in ECA pressing, Scripta Materialia, 2003, 48, 1-4.
[11] شاعری م.ح.، شاعری م.، صالحی م.ت.، سیدین ح.، ابوطالبی ف.ر.، بررسی اثر فرآیند ECAP بر بافت آلیاژ آلومینیوم 7075، مجله مهندسی متالورژی، 1393، 17(56) 49-57.
[12] ناصری ر.، کدخدایان م.، شریعتی م.، بررسی برگشت‌ فنری تیتانیم خالص تجاری فوق‌ریزدانه در آزمون خمکاری سه‌نقطه‌ای، نشریه مهندسی مکانیک مدرس، 1395، 16(11) 266-276.
[13] Azushima A., Kopp R., Korhonen A., Yang D.Y., Micari F., Lahoti G.D., Groche P., Yanagimoto J., Tsuji N., Rosochowski A., Yanagida A., Severe plastic deformation (SPD) processes for metals, CIRP Annals Manufacturing Technology, 2008, 57, 716-735.
[14] اکبری‌پناه م.، صلواتی م.، محمودی ر.، بررسی و مطالعه اثر فرآیندهای اکستروژن و فورج چندمحوری (MDF) بر ریزساختار، استحکام برشی و سختی سطح آلیاژ منیزیم AM60، نشریه مهندسی مکانیک مدرس، 1395، 19(11) 406-416.
[15] Miyajima Y., Mitsuhara M., Hata S., Nakashima H., Tsuji N., Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminum fabricated by severe plastic deformation, Materials Science and Engineering A, 2010, 528, 776–779.
[16] Shaeri M., Salehi M., Seyyedein S., Abutalebi M., Park J.K., Characterization of microstructure and deformation texture during equal channel Angular pressing of Al–Zn–Mg–Cu alloy, Journal of Alloys and Compound, 2013, 576, 350-357.
[17] Shaeri M.H., Salehi M.T., Seyyedein S.H., Abutalebi M.R., Park J.K., Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment, Materials and Design, 2014, 57, 250-257.
[18] Akbaripanah F., Fereshteh-Saniee F., Mahmudi R., Kim H., Microstructural homogeneity, texture, tensile and shear behavior of AM60 magnesium alloy produced by extrusion and equal channel angular pressing, Materials and Design, 2013, 43, 31-39.
[19] دشتی ع.، شاعری م.ح.، تقی‌آبادی ر.، بررسی اثر تغییر شکل پلاستیک شدید بر ریزساختار، خواص مکانیکی و هدایت الکتریکی آلیاژ آلومینیم 7075، مجله مواد نوین، 1396، در دست چاپ.
[20] Sellamuthu, P., Collins, P.K., Hodgson, P.D., Stanford N., Correlation of tensile test properties with those predicted by the shear punch test, Materials and Design, 2013, 47, 258-266.
[21] Stolyarov, V.V., Lapovok, R., Brodova, I.G., Thomson P.F., Ultrafine-grained Al-5Fe alloy processed by ECAP with backpressure, Materials Science and Engineering A, 2003, 357, 159-167.
[22] Stolyarov, V.V., Lapovok R., Effect of backpressure on structure and properties of AA5083 alloy processed by ECAP, Journal of Alloys and Compound, 2004, 378, 233-236.
[23] Lapovok R., The role of back-pressure in equal channel angular extrusion, Journal of Materials Science, 2005, 40, 341-346.
[24] Shaeri M.H., Shaeri M., Ebrahimi M., Salehi M.T., Seyyedein S.H., Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy, Progress in Natural Science: Materials International, 2016, 26, 182-191.
[25] Kavosi J., Saei M., Kazeminezhad M., Dodangeh A., Modeling of dislocation density and strength on rheoforged A356 alloy during multi-directional forging, Computational Materials Science, 2014, 81, 284-289.
[26] Chinh N.Q., Gubicza J., Langdon T.G., Characteristics of face-centered cubic metals processed by equal-channel angular pressing, Journal of Materials Science, 2007, 42, 1594-1605.
[27] Gubicza J., Schiller, I., Chinh N.Q., Illy J., Precipitation microstructure of ultrafine-grained Al-Zn-Mg alloys processed by severe plastic deformation, Materials Science Forum, 2007, 537-538, 169-176.
[28] Gubicza J., Schiller I., Chinh N.Q., Illy J., Horita Z., Langdon T.G., The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys, Materials Science and Engineering A, 2007, 460-461, 77-85.