The Effect of Precipitation Hardening on Microstructural Characteristics of ‎Directionally Solidified Nickel-Based Superalloy GTD-111‎

Document Type : Original Research Article

Authors

1 M.Sc., Materials Science and Engineering, Sharif University of Technology

2 PhD Student, Materials Engineering, Materials and Energy Research Center, Iran.

3 Associate Professor, Materials Science and Technology Department, Sharif University of Technology, Tehran, Iran

10.22034/frj.2018.119582.1025

Abstract

The Ni-based superalloy GTD-111 possesses excellent hot corrosion resistance, oxidation resistance and high strength at elevated temperature; accordingly, the alloy is used in manufacturing of the first stage blades of powerful gas turbines. In this study, the effect of homogenization treatment, partial dissolution with two different cooling rates (air and water) along with aging on the microstructure and micro hardness of directionally solidified GTD-111 were studied. To this end, cylindrical specimen (diameter of 10 mm and height of 40 mm) with columnar-grained structure were produced under growth rate of 6mm/min using Bridgman technique. The macro-structural studies of the DS GTD-111 specimen show that the columnar grains along the longitudinal direction of specimen were provided by temperature gradient in liquid metal. Microstructural analyses illustrate that homogenization treatment led to dissolution of a portion of primary γʹ precipitates. Furthermore, the primary γʹ precipitates in the specimen that was cooled in water after partial solution treatment, were spherical and cubic with curved corner. However, the primary γʹ precipitates were angular cubic in the specimen which was cooled in air after partial solution treatment. Since the γ matrix became supersaturated during the homogenization and partial solution treatment, aging process was effective on nucleation and growth of secondary γʹ precipitates. This was especially more substantial in the specimen which was cooled in water after partial solution. Hardness of the DS specimen was reduced after homogenization. While, aging resulted in increasing the hardness of the DS specimen due to the improvement of morphology, size and distribution of γʹ.

Keywords

Main Subjects


[1] Durand-Charre M., The microstructure of superalloys, CRC press, 1998.
[2] Sajjadi S. A., Nategh S., Guthrie R. I., Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111, Materials Science and Engineering: A, 2002, 325(1) 484-489.
[3] Zhang X., et al., Effect of solidification rate on grain structure evolution during directional solidification of a Ni-based superalloy, Journal of Materials Science & Technology, 2013, 29(9) 879-883.
]4[ قنبری حقیقی م.، شبیه‌سازی عددی و فیزیکی فرآیند انجماد جهت‌دار به روش بریجمن به ‌منظور رشد تک‌بلورسوپر آلیاژ پایه نیکل، پایان نامه دکترا؛ دانشگاه علم و صنعت ایران؛ 1393.
]5[ کرمانپور ا.، مدلسازی و شبیه‌سازی فرآیند انجماد جهت‌دار پره‌های توربین گازی صنعتی، پایان‌نامه دکترا؛ دانشگاه صنعتی شریف؛ 1378.
[6] Miller J. D., Pollock T. M., The effect of processing conditions on heat transfer during directional solidification via the Bridgman and liquid metal cooling processes, Metallurgical and Materials Transactions A, 2014, 45(1) 411-425.
[7] Donachie M.J., Donachie S.J., Superalloys: A Technical Guide, ASM international, 2002.
[8] Sajjadi S. A., Zebarjad S. M., Guthrie R.I.L., Isac M., Microstructure evolution of high-performance Ni-base superalloy GTD-111 with heat treatment parameters, Journal of Materials Processing Technology, 2006, 175(1) 376-381.
[9] Dadkhah A., Kermanpur A., On the precipitation hardening of the directionally solidified GTD-111 Ni-base superalloy: Microstructures and mechanical properties, Materials Science and Engineering: A, 2017, 685, 79-86.
[10] Trexler M., Church B., Sanders T., Determination of the Ni3 (Ti, Al) dissolution boundary in a directionally solidified superalloy, Scripta Materialia, 2006, 55(6) 561-564.
[11] ASTM E92-82, Standard Test Method for Vickers Hardness of Metallic Materials, ASTM International, West Conshohocken, 2003.
[12] Zhou Y., Sun X., Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy, Science China Technological Sciences, 2012, 55(5) 1327-1334.
]13[ قنبری حقیقی م.، شبستری س.، ابوطالبی م.، بررسی تجربی و عددی ایجاد دانه‌های سرگردان در فرآیند رشد تک بلور سوپرآلیاژ پایه نیکل، مهندسی متالورژی و مواد، 1396، 28(2) 13-26.
]14[ بابائی م.، عباسی م.، قاضی میرسعید م.، مصطفایی م.، اثر قطر قالب بر ساختار انجماد جهت­دار یافته سوپرآلیاژ GTD-111 در روش بریجمن، ریخته‌گری، 1396، 36(114) 2-8.
[15] Zhang Y., Huang Y., Yang L., Li J., Evolution of microstructures at a wide range of solidification cooling rate in a Ni-based superalloy, Journal of Alloys and Compounds, 2013, 570 70-75.
[16] Porter D.A., Easterling K. E., Sherif M., Phase Transformations in Metals and Alloys, CRC Press, 2009.
[17] Masoumi F., Shahriari D., Jahazi M., Cormier J., Devaux A., Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy, Scientific Reports, 2016, 28650.
[18] Mullins W.W., Sekerka R.F., Morphological stability of a particle growing by diffusion or heat flow, Journal of Applied Physics, 1963, 34(2) 323-329.
[19] Doherty R., Role of interfaces in kinetics of internal shape changes, Metal Science, 1982, 16(1) 1-14.
[20] Yoo Y., Morphological instability of spherical γ′ precipitates in a nickel base superalloy, Scripta Materialia, 2005, 53(1) 81-85.
[21] He L.Z., Zheng Q., Sun X.F., Guan H.R., Hu Z.Q., Tieu A.K., Lu C., Zhu H.T., Effect of heat treatment on microstructures and tensile properties of Ni-base superalloy M963, Materials Science and Engineering: A, 2005, 398(1) 128-136.
[22] Jackson M.P., Reed R.C., Heat treatment of UDIMET 720Li: the effect of microstructure on properties, Materials Science and Engineering A, 1999, 259(1) 85-97.