Effect of Shot-Peening on the Wear Behavior of Two Types of High Manganese Austenitic Steel

Document Type : Original Research Article

Authors

1 MSc, Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan, Iran ‎

2 Associate Professor, Department of Mechanical Engineering, Tiran Branch, Islamic Azad University, Isfahan, Iran ‎

10.22034/frj.2018.108598.1013

Abstract

In this research, the effect of shot-peening treatment on the wear behavior of two types of high manganese austenitic steel (Fe-7Mn-0.6Si- 1.2C and Fe-17Mn-0.6Si-1.2C) was investigated. In this regard, two samples with various manganese contents of 7 and 17 weight percent are cast, respectively. In order to achieve a uniform structure of austenite into all samples, solution-annealing process is performed at temperature of 1100°C during 2h. Micro hardness measurement and tensile testing as well as wear test according to the rubber wheel-dry sand method are conducted on all heat-treated samples. Surfacing hardening treatment by using of shot- peening equipment is done during 15 and 30 mines on all samples. The results showed that when the percentage of manganese increased from 7 to 17% in the heat-treated samples, hardness and tensile strength values are increased and improved about 27% and 10%, respectively. The surface hardness of high manganese austenite steels is increased due to the applying surface work hardening with shot-pinning treatment. Thus, the highest hardness is observed in the shot-peened sample at time of 30 min. however, the highest hardness and wear %resistance are determined in the sample containing 7%Mn. The investigation of worn surfaces showed that the wear mechanism was abrasive mechanism. Moreover, the amount of and the depth of grooves are reduced with increasing of hardness values.

Keywords

Main Subjects


[1] Liu F.C., Lv B., Zhang F.C., Yang S., Enhanced work hardening in Hadfield steel during explosive treatment, Materials Letters, 2011, 65, 2333-2336.
[2] Subramanya D.K, Swansiger A.E., Avery H.S., Austenitic Mangeanese Steel, ASM Metals Handbook, Vol. 1, 10th edition, 1993, 822-840.
]3[عباسی،م.، خیراندیش ش.، خرازی ی.، حجازی ج.، استفاده از سنگ ساینده جهت ارزیابی رفتار سایشی فولادها، نشریه مهندسی متالورژی و مواد، 1390، 21(2) 57-70.
[4] Agunsoye J., Isaac T., Abiona A., On the comparison of microstructure characteristic and mechanical properties of high chromium white iron with the Hadfield austenitic manganese steel, Journal of Minerals and Materials Characterization and Engineering, 2013, 1, 24-28.
[5] Srivastava A., Das K., Microstructural characterization of Hadfield austenitic manganese steel, Journal of Materials Science, 2008, 43, 5654-5658.
[6] Fattah-Alhosseinia A., Izadia B., Asadi-Asadabad M., Evaluation of corrosion behavior on Mn-Cr austenitic steels using 0.1M HCl solution, Journal of Advanced Materials and Processing, 2014, 2(1) 55-63.
[7] Si H., Xiong R., Song F., Wen Y., Pen H., Wear resistance of austenitic steel Fe–17Mn–6Si–0.3C with high silicon and high manganese, Journal of Acta Metall, 2014, 27, 352-358.
[8] Dastur Y.N., Leslie W.C., Mechanism of work hardening in Hadfield manganese steel, Metallurgical Transaction A, 1981, 12(5) 479-759.
[9] Guo S.L., Sun D.Y., Zhang F.C., Feng X.Y., Qian L.H., Damage of Hadfield steel crossing due to wheel rolling impact passages, Wear, 2013, 305, 267-273.
[10] Razavi Gh. Ansaripour R.A., Monajatizadeh A. H., Toroghinejad M.R., An investigation on full annealing temperature and annealing twins density in Fe-33Mn-3Si-2Al high-manganese steel, Journal of Advanced Materials and Processing, 2013, 1(1) 3-8.
]11[ عباسی، م.، حجازی ج.، خیراندیش ش.، خرازی ی.، تاثیر آلومینیم بر رفتار تریبولوژیکی فولاد هادفیلد تحت سایش آرام، مجله علوم و مهندسی سطح، 1395، 29، 55- 67.
]12[ عباسی م.، خیراندیش ش.، خرازی، ی.، حجازی، ج.، بررسی تاثیر برخی عوامل اصلی بر رفتار سایشی فولاد هادفیلد، مجله علوم و مهندسی سطح، 1388، 7، 69-80.
 [13] Najafabadi V.N., Amini K., Alamdarlo M.B., Investigating the effect of titanium addition on the wear resistance of Hadfield steel, Metallurgical Research Technology, 2014, 111, 375–382.
[14] Silman G.I., Pristuplyuk N.I., Froltov M.S., Effect of vanadium on the structure and properties of high manganes steel, Journal of Metal Science and Heat Treatment, ,1980, 22, 124-127.
[15] Akeel D, Omar A., Phase transformations of Hadfield manganese steels, Journal  of  Engineer  and Technology, 2007, 25( 26) 227-289.
[16] Abbasi M., Kheirandish, Sh., Kharrazi Y., Hejazi J., On the comparison of the abrasive wear behavior of aluminum alloyed and standard Hadfield steels, Wear, 2010, 268, 202-207.
[17] Si H., Xiong R., Song F., Wen Y., Pen H., Wear resistance of austenitic steel Fe–17Mn–6Si–0.3C with high silicon and high manganese, Journal of Acta Metall., 2014, 27, 352-358.
[18] Yan W, Fang L, Sun K, Xu Y, Effect of surface work hardening on wear behavior of Hadfield steel, Materials Science and Engineering A, 2007, 460–461, 542–549.
[19] Torabi S.A., Amini K., Gharavi F., The effect of shot peening and  precipitation hardening on the wear behavior of high manganese austenitic steels, Metallurgical Research and Technology, 2017, 114, 1-6.
[20] ASTM: E8 / E8M – 16a, Standard Test Methods for Tension Testing of Metallic Materials, 2004.
[21] ASTM: E415 - 99a, Standard Test Method for Optical Emission Vacuum Spectrometric Analysis of Carbon and Low-Alloy Steel, 1999.
[22] DIN 50125, Testing of Metaliv Materials Tensile Test Pieces, 2009.
[23] ASTM: E92-82, Standard Test Methods for Vickers Hardness Hardness of Metallic Materials.
[24] ASTM: E384–16, Standard Test Method for Microindentation Hardness of Materials, 2005.
[25] ASTM G65-00, Standard Test Method for Measuring Abrasion using the Dry Sand/Rubber Wheel Apparatus, 2010.
[26] Tasker J., Austenitic manganese steel fact and fallacy, Technical Advances in Steel Casting England, 1983, 15, 1-13.
[27] Jiang W. H., Pan W. D. , Ren Y. L. , Han X. L., In-situ Formation of TiC /Hadfield Steel Composites, Journal of Materials Science Letterrs,  1998, Vol.17, pp.1527-1529.
[28] Subramanyam D.K., Grub G. , Chapin H., Austenitic Manganese steel Casting, ASM Metals Handbook, 9th edition, 1993, 9, 237-241.
[29] Tomaszewska A., Jablonska M., Hadasik E., Niewieski G., Kawalla R., Research of selected properties of high manganese steel wires, Materials Science and Engineering, 2011, 22, 1-6.
[30] Atabaki M., Jafari S., Abdollah-pour H., Abrasive wear behavior of high chromium cast iron and hadfield steel-a comparison, Journal of  Iron and Steel Research, 2012, 19, 43-50.
[31] Hofer S., Schestak M., Comparison of austenitic high-Mn-steels with different Mn and C-contents regarding their processing properties, Journal of BMH, 2011, 156, 99-104.
]32[ عباسی، م.، خیراندیش، ش.، حجازی، ج.، خرازی، ی.، ارتباط بین کرنش دوقلویی و پدیده ی چروکیدگی سطحی در تغییر شکل مومسان فولاد آستنیتی منگنزی، نشریه مهندسی متالورژی و مواد، 1393، 25(2) 1-12.
[33]  Song C., Xia W., Zhang J., Guo Y., Zhai Q.,  Microstructure and mechanical of Fe-Mn based alloys after sub-rapid solidification, Journal of  Materials and design, 2013, 51, 262-267.
[34] Mahlami C.S., PAN X., An overview on high manganese steel casting, World Foundry Congress, 2014, 1-10.
[35] Alaneme K.K., Folorunso D.O., Aramida F.O., Aribo S., Effect of precipitation hardening on hardness and microstructure of austenitic manganese steels, Journal of Mineral and Materials Characterization & Engineering, 2010, 9(2) 157-164.
[36] Krauss G., Heat Treatment and Processing Principles, ASM International, Second Edition, 1990.
[37] Xiaodong D., Guodong S., Yifei W, Jianfeng W., Haoyu Y., Abrasion behavior of high manganese steel under low impact energy and corrosive conditions, Advances in Tribology, 2009, 1-5.
[38] He Zh. M., Jiang Q., Fu Sh., Xie J., Improved work-hardening ability and wear resistance of austenitic manganese steel under non-severe impact-loading conditions, Wear, 1987, 120, 305-319.
[39] Kato K., Adhachi K., Modern Tribology Handbook, CHRC Press, 2001.
[40] Paydar H., Amini K., Akhbarizadeh A., Investigating the effect of deep cryogenic heat treatment on the wear behavior of 100Cr6 alloy steel, Kovove Mater., 2014, 52, 163–169.