Investigation of the Effect of Copper on Microstructural Modification and ‎Quality Index of Al-15Mg2Si Composite

Document Type : Original Research Article

Authors

1 M.Sc., Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, Iran.

2 Associate Professor, Department of Metallurgy and Materials Engineering, Imam Khomeini International University, Qazvin, IRAN

10.22034/frj.2019.206475.1104

Abstract

In-situ Al-15Mg2Si composite due to their low density and good strength and wear properties are considered as potential candidates to substitute the Al and cast iron parts used in automotive and aerospace industries. The improved properties of these composites are governed by controlling the size and morphology (modification) of the primary Mg2Si particles. In the current study the effect of Cu addition (1.0, 3.0, and 5.0 wt. %) on metallurgical structure and quality index of Al-15Mg2Si composite was investigated. According to the results, Cu addition modified the morphology and reduced the average size of primary Mg2Si particles. The addition of Cu up to 3.0 wt. % improved the composite tensile strength by up to 34% whilst its further addition impaired the tensile properties. Moreover, the addition of Cu up to 1.0 wt. % improved the composite elongation by about 7%. This is while its further addition deteriorated the composite ductility. The maximum quality index was observed in 3.0 wt. % Cu containing composite where its quality index was 8% higher than that of the base sample. The microstructural observations, micro-hardness testing, precipitates chemical analysis, and fractography of fractured surfaces revealed that solid-solution-strengthening, dispersion hardening of Cu-containing precipitates, and modification of Mg2Si particles are the main factors improving the composite quality. Moreover, increasing the volume fraction of hard Cu-precipitates and micro-pores, negatively affected the composite tensile properties and quality index.

Keywords


[1]       Emamy M., Nemati N., Heidarzadeh A., The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15%Mg2Si composite, Materials Science and Engineering, A. 2010, 527(12) 2998-3004.
[2]       Lin J., Bai G., Liu Z., Niu L., Li G., Wen C., Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg2Si/Al composite, Materials Chemistry and Physics, 2016, 178, 112-118.
[3]       Nadim A., Taghiabadi R., Razaghian-Noghani M.T., Ghoncheh M.H., Effect of Fe-impurity on tribological properties of Al-15Mg 2 Si composite, Transactions of Nonferrous Metals Society of China, 2018, 28(6) 1084-1093.
[4]       Qin Q., Li W., The Formation and characterization of the primary Mg2Si dendritic phase in hypereutectic Al-Mg2Si alloys, Materials Transactions, 2016, 57(2) 85-90.
[5]       Srinivas V., Singh V., Development of in situ as cast Al–Mg2Si particulate composite: microstructure refinement and modification studies, Transactions of the Indian Institute of Metals, 2012, 65(6) 759-764.
[6]       Fatemi-Jahromi F., Emamy M., An investigation into high temperature tensile behavior of hot-extruded Al–15wt%Mg2Si composite with Cu-P addition, Manufacturing Science and Technology, 2015, 3(4) 160-169. 
[7]       Moussa M.E., Waly M.A., El-Sheikh A.M., Effect of Ca addition on modification of primary Mg2Si, hardness and wear behavior in Mg–Si hypereutectic alloys, Journal of Magnesium and Alloys, 2014, 2(3) 230-238.
[8]       Nasiri N., Emamy M., Malekan A., Norouzi M.H., Microstructure and tensile properties of cast Al–15% Mg2Si composite: Effects of phosphorous addition and heat treatment, Materials Science and Engineering: A, 2012, 556, 446-453.
[9]       Zengin H., Effect of solidification rate on corrosion resistance of cast Al-10 Mg2Si in-situ composite, OHU Journal of Engineering Science, 2019, 8(2) 1143-1152.
[10]    Ghandvar H., Idris M.H., Ahmad N., Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in-situ composites, Journal of Alloys and Compounds, 2018, 751: 370-390.
[11]    Zamani R., Mirzadeh H., Emamy M., Magnificent grain refinement of Al-Mg2Si composite by hot rolling, Journal of Ultrafine Grained and Nanostructured Materials, 2018, 51(1) 71-76.
[12]    Emamy M., Vaziri-Yeganeh S.E., Razaghian A., Tavighi K, Microstructures and tensile properties of hot-extruded Al matrix composites containing different amounts of Mg2Si, Materials Science and Engineering: A, 2013, 586, 190-196.
[13]    Jiang W., Xu X., Zhao Y., et al, Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al- Mg2Si in-situ composite, Materials Science and Engineering: A, 2018, 721, 263-273.
[14]    Samadi F., Emamy M., Honarbakhsh Raouf A., Akrami A., Effect of heat treatment on the mocrostructure, hardness, and wear properties of Al-15Mg2Si-3Cu with different contents of Zn, Manufacturing Science and Technology, 2015, 3(4) 189-195.
[15]    Chegini M., Shaeri M., Taghiabadi R., Chegini S., Djavanroodi F., The correlation of microstructure and mechanical properties of in-situ Al-Mg2Si cast composite processed by equal channel angular pressing, Materials, 2019, 12(9) 1553.
[16]    Moharrami A., Razaghian A., Emamy M., Taghiabadi R., Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20wt% Mg2Si composite, Journal of Tribology, 2019, 141(12).
[17]    Nordin N.A., Farahany S., Ourdjini A., Abu Bakar T.A., Hamzah E., Refinement of Mg2Si reinforcement in a commercial Al–20% Mg2Si in-situ composite with bismuth, antimony and strontium, Materials Characterization, 2013, 86, 97-107.
[18]    Wang H., Liu F., Chen L., Zha M., Liu G., Jiang Q., The effect of Sb addition on microstructures and tensile properties of extruded Al–20Mg2Si–4Cu alloy, Materials Science and Engineering: A, 2016, 657, 331-338.
[19]    Ghandvar H., Idris M.H., Ahmad N., Emamy M., Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15% Mg2Si in-situ composite, Materials Characterization, 2018, 135, 57-70.
[20]    Wu X., Zhang G., Wu F., Wang Z., Influence of neodymium addition on microstructure, tensile properties and fracture behavior of cast Al- Mg2Si metal matrix composite, Journal of Rare Earths, 2013, 31(3) 307-312.
[21]    Jiang QC, Wang HY, Wang Y, Ma BX, Wang JG, Modification of Mg2Si in Mg–Si alloys with yttrium, Materials Science and Engineering: A, 2005, 392(1-2) 130-135.
[22]    Zhao Y.G., Qin Q.D., Zhou W., Liang Y.H., Microstructure of the Ce-modified in situ Mg2Si /Al–Si–Cu composite, Journal of Alloys and Compounds, 2005, 389(1-2) L1-L4.
[23]    Wang L., Guo E, Ma B, Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys, Journal of Rare Earths, 2008, 26(1) 105-109.
[24]    Emamy M., Emami A.R., Tavighi K, The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al–15%Mg2Si–0.15%Li composite, Materials Science and Engineering: A, 2013, 576, 36–44.
[25]    Yan F., Ji S.X., Fan Z.Y., Effect of Cu on the microstructure and mechanical properties of diecast Al-Mg2Si-Mg based alloy, Materials Science Forum, 2014, 794–796, 172–177.
[26]    Tiryakioğlu M., Staley J.T., Campbell J., Evaluating structural integrity of cast Al–7%Si–Mg alloys via work hardening characteristics, Materials Science and Engineering: A, 2004, 368(1-2) 231-238.
[27]    محمدی م.، تقی‌آبادی ر.، نظری م.، تاثیر عناصر بهساز در بهبود اندیس کیفیت آلیاژ آلومینیم 356A قبل و بعد از عملیات حرارتی 6T، پژوهش‌نامه ریخته گری، 1397، (1)2، 25-11.
[28]    Drouzy M., Jacob S., Richard M., Interpretation of tensile results by means of quality index and probable yield strength, AFS International, Cast Metals Research Journal, 1980, 5, 43-50.
[29]    Vušanović I., Šarler B., Krane M.J.M., Microsegregation during the solidification of an Al–Mg–Si alloy in the presence of back diffusion and macrosegregation, Materials Science and Engineering: A, 2005, 413-414, 217-222.
[30]    Wang H.Y., Zhu J.N., Li J.H., Li C., Zha M., Wang C., Yang Z.Z., Jiang Q.C., Refinement and modification of primary Mg2Si in an Al–20Mg2Si alloy by a combined addition of yttrium and antimony, Crystal Engineering Communication, 2017, 19(42) 6365–6372.
[31]    Matsuda K., Ikeno S., Uetani, Y, Sato, T, Meta-stable phases in an Al-Mg-Si alloy containing copper, Metallurgical and Materials Transactions A, 2001, 32(6) 1293–1299.
[32]    Wang S, Fan C, Crystal structures of Al2Cu revisited: understanding existing phases and exploring other potential phases, Metals 2019, 9 (10) 1037.
[33]    Zhang J., Fan Z., Wang Y., Zhou B., Microstructural Development of Al–15wt.%Mg2Si in situ composite with mischmetal addition, Materials Science and Engineering: A, 2000, 281(1–2) 104–112.
[34]    Chen L., Wang H.Y., Liu K., Wang C., Luo D., Jiang Q.C., Growth of Mg2Si crystals shaped by {100} and {111} facets from Al–Mg–Si melts in the presence of calcium, Crystal Engineering Communication, 2017, 19(22) 3058–3062.
[35]    Taghiabadi R., Fayegh A., Pakbin A., Nazari M., Ghoncheh MH, Quality index and hot tearing susceptibility of Al–7Si–0.35Mg– X Cu alloys, Transactions of Nonferrous Metals Society of China. 2018, 28(7) 1275–1286.
[36]    Prados E.F., Sordi VL, Ferrante M, The effect of Al2Cu precipitates on the microstructural evolution, tensile strength, ductility and work-hardening behaviour of a Al–4wt.% Cu alloy processed by equal-channel angular pressing, Acta Materialia, 2013, 61(1) 115–125.
[37]    Shabestari S.G., Moemeni H., Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg Alloys, Journal of Materials Processing Technology, 2004, 153–154, 193–198.
[38]    Cáceres C., Djurdjevic M., Stockwell T., Sokolowski J., The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys, Scripta Materialia, 1999, 40(5) 631–637.
[39]    Edwards G.A., Sigworth G.K., Caceres C.H., StJohn D.H., Barresi J., Microporosity formation in Al−Si−Cu−Mg casting alloys, AFS Transactions, 1997, 105, 809−818.
Heidarzadeh A., Emamy M., Rahimzadeh A., Soufi R., Sohrabi-Baba-Heidary D., Nasibi S., The effect of copper addition on the fluidity and viscosity of an Al-Mg-Si alloy, Journal of Materials Engineering and Performance, 2013, 23(2) 469–476.