Effect of Zirconium and Heat Treatment on Microstructure and Wear ‎Properties of High Manganese Steels

Document Type : Original Research Article

Author

Assistant Professor, Department‏ ‏of Material Science, Saveh Branch, Islamic Azad University, ‎Saveh, Iran

10.22034/frj.2022.319623.1146

Abstract

 




Standard manganese steel or Hadfield steel is a non-magnetic alloy of iron, manganese, carbon with a composition of 1.0-1.4% carbon and 10-14% manganese. It is important to maintain the ratio of manganese to carbon in this steel. The good abrasion resistance, microstructure and hardenability are the main properties of these steels. The important limitations in the production of high manganese steel parts, are formation of coarse manganese-carbides during the solidification process, and partially solution of carbides in microstructure during solution annealing heat treatment. In this research, the effects of increasing zirconium alloy element and the effect of solution annealing heat treatment on microstructure and abrasion resistance of manganese steels is investigated by analyzing microstructure and wear conditions Wear test was carried out at 500, 1000 and 1500 meters distance. The wear test results showed that Zr can modify wear resistant in as cast and solution treatment conditions. The microstructure assessment results shows that increasing of Zirconium element increase solution tendency of carbides in as cast and heat treated condition, and modify remained carbide sizes and distribution in Zr content steels especially in 0.25% Zr.

Keywords

Main Subjects


[1] ترابی ا.، امینی ک.، ناصری م.، بررسی تأثیر کارسختی اولیه بر رفتار سایشی فولاد منگنزی آستنیتی، فرآیندهای نوین در مهندسی مواد، 1395، 3(10) 102 -93.
[2] عباسی، م.، خیراندیش ش.، حجازی ج.، خرازی ی.، ارتباط بین کرنش دوقلوئی و پدیده‌ی چروکیدگی سطحی در تغییر شکل مومسان فولاد آستنیتی منگنزی، نشریه مهندسی متالوژی مواد، 1393، 25(2)12-1.
[3] Subhi A.D., Abdulrazaq O.A., Phase transformations of hadfield manganese steels, J. Eng. & Technology, 2007, 25 (6) 808-814.
[4] Srivastava A.K., Das K., Microstructural characterization of hadfield austenitic manganese steel, J. Mater. Sci., 2008, 43 5654–5658.
[5] Bouaziz O., Allain S., Scott C., Cugy P., Barbier D., High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships, Current Opinion in Solid State and Materials Science, 2011, 15 141–168.
[6] Haakonsen F., Optimizing of strømhard austenitic manganese steel, Thesis for the Degree of Philosophe Doctor, Norwegian University of Science and Technology, 2009, May.
[7] Hull D., Deformation twinning, Proceedings of a Metallurgical Society Conference, Gainesville, Floride, Gordon and Breach Science, New-York, 1964.
[8] Agunsoye J.O., Balogunl S.A., Esezobor D.E., Nganbe M., Wear of Hadfield austenitic manganese steel casting, Scripta Mater., 2000, 42 1107-1112.
[9] Azadi M., Pazuki A., Olya M., M.J., The effect of new double solution heat treatment on the high manganese hadfield steel properties, Metallography, Microstructure, and Analysis, 2018, 7 618–626.
[10] عباسی.م،  خیراندیش ش.، خرازی یحجازی ج.، استفاده از سنگ ساینده جهت ارزیابی رفتار سایشی فولادها، مهندسی متالورژی و مواد، 1389، 21(2) 70-57.
[11] عباسی م.، خیراندیش ش.، خرازی ی.، حجازی ج.، بررسی تأثیر برخی عوامل اصلی بر رفتار سایشی فولاد هادفیلد، فصلنامه علوم و مهندسی سطح، 1388، 7، 80-69.
[12] نعمتی نجف‌آبادی و.، مناجاتی‌زاده ح.، امینی ک.، بررسی تأثیر تیتانیم بر بهبود خواص فولاد هادفیلد ASTM A128-C، فرآیندهای نوین در مهندسی مواد، بهار 1392، 7، (1پیاپی24) 54-45.
[13] Hadi S., Suryo A., Bayuseno P., Jamari J., Analysis of AISI material power of AISI 4140 bucket teeth excavator using influence of abrasive wear, AIP Conference Proceedings, 2018.
[14] Keleş A., Yildirim M., Improvement of mechanical properties by means of titanium alloying to steel teeth used in the excavator, Engineering Science and Technology, An International Journal, 2020, 23(5) 1208-1213.
[15] Fernández J.E., Vijande R., Tucho R. Rodr´ıguez J., Martın B.A., Materials selection to excavator teeth in mining industry, Wear, 2001, 250 11–18.
[16] Isheim D., Hunter A.H., Zhang X.J., Seidman D.N., Nanoscale analyses of high-nickel concentration martensitic high-strength steels, Metallurgical And Materials Transactions A, 2013, 44 3046–3059.
[17] Show B.K., Veerababu R., Balamur R., Krishnan A.,  Malakondaiah G., Effect of vanadium and titanium modification on the microstructure and mechanical properties of a microalloyed HSLA steel, materials Science And Engineering: A, 2010, 527 (6) 1595-1604.
[18] Ghosh P., Ray R.K., Ghosh C., Bhattacharjee D., Comparative study of precipitation behavior and texture formation in continuously annealed Ti and Ti + Nb added interstitial-free high-strength steels, Scripta Materialia, 2008, 58 (11) 939-942.
[19] Sathishkumar K., Kalaivanan P., Karthick R., Kersone C., Design and analysis of hardness improvement on excavator bucket teeth, IJARIIE, 2017, 3(2).
[20] Zhou Y.J., Kan W., Modeling and simulation of hydraulic excavator based on virtual prototype, Advanced Materials Research, 2013, 785 1147-1150.