Effect of Pouring Temperature and Partial Remelting on Microstructure and Wear Properties of A390 Alloy in Slope Cooling Casting

Document Type : Original Research Article

Authors

1 Babol Noshivani University of Technology

2 Materials Department-Babol Noshivani University of Technology

3 Babol Noshirvani University of Technology

Abstract

Slope cooling casting is one of the production methods in semi-solid state. Semi-solid processes led to reduce gas porosity and shrinkage and modify the structures. In this research, the effect of pouring temperature in slope cooling casting process and partial remelting temperature on microstructure and wear properties of Al-A390 alloy have been investigated. In this regard, casting was performed at 5 different pouring temperatures on a sloping surface with the constant length of 500 mm, angle of 45° and mold temperature of 450°C. Then, the partial remelting process was carried out at 3 different temperatures with a constant time. The results show that the suitable condition in view of the particle non-dendritic and the high hardness is achieved at the temperature of 590°C on the slope cooling with the length of 500 mm and the angle of 45°. In examining of the effect of the partial remelting temperature, the sample kept at temperature of 545°C for 30 minutes, compared to samples with partial remelting temperature of 555°C and 565 °C, has a finer and more uniform grain structure. So that, the hardness and the weight loss at this temperature were obtained about 130 HB and 0.0193 gr. The hardness and wear resistance of this sample in comparison to sample without partial remelting increased 30 and 43 percent, respectively.

Keywords

Main Subjects


[1] Hernández F.C.R., Sokolowski J.H., Thermal analysis and microscopical characterization of Al–Si hypereutecti alloys, Journal of Alloys and Compounds, 2006, 419, 180-190.
[2] Kapranos P., Kirkwood D.H., Atkinson H.V., Rheinlander J. T., Bentzen J. J., Toft P.T., Debel C.P., Laslaz G., Maenner L., Blais S., Rodriguez J. M. I., Lasa L., Giordano P., Chiarmetta G., Giese A., Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy, Journal of  Materials Processing Technology, 2003, 135, 271–277.
[3] Lee J., Lee H., Kim M., Formation of spherical primary silicon crystals during semi-solid processing of hypereutectic Al-15.5wt%Si alloy, Scripta Metallurgica et Materialia, 1995, 32, 1945-1949.
[4] Lu D., Jiang Y., Guan G., Zhou R., Li Z., Zhou R., Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring, Journal of Materials Processing Technology, 2007, 189, 13-18.
[5] Motegi T., Tanabe F., Sugiura E., Continuous Casting of Semisolid Aluminium Alloys, Mater. Sci. Forum, 2002, 1, 203-208.
[6] Birol Y., A357 thixoforming feedstock produced by cooling slope casting, Journal of Materials Processing Technology, 2007, 186, 94-101.
 [7] عابدی ا.، صالحی سیاوشانی ر.، ممدوح وزیر آبادی ا.، شکل‌دهی و ریخته‌گری نیمه‌جامد، انتشارات دانشگاه تربیت دبیر شهید رجایی، 1390.
[8]  نوروزی س.، بخشی جویباری م.، کلاهدوز ا.، حسینی‌پور ج.، تاثیر دما روی ریزساختار آلیاژ ریخته‌گری نیمه‌جامد روی سطح شیب‌دار خنک کننده، فصل‌نامه مکانیک هوافضا (ساخت و تولید)، 1392، 9(3) 55-63.
[9] Haga T., Nakamura R., Tago R., Watari H., Effects of casting factors of cooling slope on semisolid condition, Transactions of  Nonferrous Metals Society of China, 2010, 20, 968-972.
[10] Ogris E., Development of Al-Si-Mg alloys for semi-solid processing and silicon spheroidization treatment (SST) for Al-Si cast alloys, Doctoral Dissertation, Swiss Federal Institute of Technology, 2002.
[11] Y. Birol, Cooling slope casting and thixoforming of hypereutectic A390 alloy, Journal of Materials Processing Technology, 2008, 207, 200-203.
[12] Ramadan N. F. M., Solidification microstructure of rheocast hyper-eutectic Al–18Si alloy, Journal of Metallurgical Engineering (ME), 2013, 2.
[13] Fana X., Yang Y., Research on the microstructure and properties of hypereutectic Al-Si alloy for semi-solid forming during heat treatment, Advanced Materials Research, 2014, 887-888, 349-356.
[14] Hu Z., Wu G., Xu J., Mo W., Li Y., Liu W., Zhang L., Ding W., Quan J., Chang Y., Dry wear behavior of rheo-casting Al−16Si−4Cu−0.5Mg alloy, Trans. Nonferrous Met. Soc. China, 2016, 26, 2818-2829.
 [15] Garat M., Blais S., Pluchon C., Loue W.R., Aluminium semi-solid processing: from the specimen to the finished part, In: Proceedings of the Fifth International Conference on Semi-Solid, Processing of Alloys and Composites, Colorado School of Mines, Colorado, USA, 1998, 17-31.
[16] Fathy, N., Microstructural Evolution of Hyper-Eutectic Al-18% Si Alloy during Semi-Solid Isothermal Heat Treatment, Journal of Research in Chemical, Metallurgical and Civil, 2014, 1, 1442-1450.
[17] Zhang J., Fan Z., Wang Y.Q., Zhou B.L., Microstructural development of Al–15wt.%Mg2Si in situ composite with mischmetal addition, Materials Science and Engineering A, 281, 2000, 104-112.
[18] Piątkowski, J., Gajdzik, B., Matuła, T., Crystallization and structure of cast A390 alloy with melt overheating temperature, Metalurgija, 2012, 51, 321-324.
[19] Damavandi E., Nourouzi S., Rabiee S. M., Effect of porosity on microstructure and mechanical properties of Al2O3(p)/Al-A356 MMC, Modares Mechanical Engineering, 2015, 15(3) 243-250.
[20] Li J., Elmadagli M., Gertsman V. Y., Lo J., Alpas A. T., FIB and TEM characterization of subsurfaces of an Al–Si alloy (A390) subjected to sliding wear, Materials Science and Engineering A, 2006, 421, 317–327.
[21] Nourouzi S., Damavandi E., Rabiee S.M., Microstructural and mechanical properties of Al–Al2O3 composites focus on experimental techniques, International Journal of Microstructure and Materials Properties, 2016, 11(5) 383-398.