The Effect of Silicon Content on the Graded Microstructure of Centrifugally Cast Al-Si Alloys

Document Type : Original Research Article

Authors

1 M.Sc., Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran

2 Associate Professor, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran.

10.22034/frj.2018.112468.1016

Abstract

In this study, the effect of silicon content on the graded microstructure of Al-Si alloys fabricated by centrifugal casting method was investigated. For this purpose, two cylinders with a chemical composition of Al-11.9wt.% Si (hypoeutectic alloy) and Al-20wt.% Si (hypereutectic alloy) were cast through vertical centrifugal casting method. Then the microstructure and hardness of radial sections of the cast cylinders were studied using optical/scanning electron microscopes and standard Brinell test method, respectively. According to the results, two hypo and hypereutectic Al-Si cylinders illustrate two different patterns of functionally graded microstructure thus hardness along the radial direction. In hypoeutectic cylinder, due to the segregation of the heavy and soft α-Al phase in centrifugal force direction, the outer and inner layers show hypoeutectic and eutectic microstructures, respectively. While in the hypereutectic cylinder due to the segregation of the light and hard primary Si particles in the centripetal direction, the outer and inner layers contain eutectic and hypereutectic microstructures, respectively.  As a result of these continuous and gradual microstructural changes in radial direction of the cylinders; firstly: the hardness of all radial sections in hypereutectic cylinder is about 10 Brinell more than the hypoeutectic one; secondly: the inner layer of hypoeutectic and outer layer of hypereutectic cylinders both with full eutectic microstructure show similar hardness; thirdly: the hardness of both cylinders moderately increase from outer periphery towards the inner periphery of the cylinders.

Keywords

Main Subjects


[1] Watanabe Y., Kawamoto A., Matsuda K., Particle size distributions in functionally graded materials, fabricated by the centrifugal solid-particle method, Comp. Sci. Tech., 2002, 62, 881–888.
[2] Erdemer F., Canakcl A., Varol T., Microstructural characterization and mechanical properties of functionally graded Al 2024/SiC composites prepared by powder metallurgy techniques, Trans. Nonferrous Met. Soc. China., 2015, 25, 3569–3577.
[3] Song J., Yu Y., Zhuang Z., Lian Y., Qi Y., Preparation of W–Cu functionally graded material coated with CVD–W for plasma-facing components, Journal of Nuclear Material., 2013, 442, S208– S213.
[4] Dbrzanski L.A. Zukowska L.W., Kula J.M., Golombek K., Structure and mechanical properties of gradient PVD coatings J. Mater. Proc. Tech., 2008, 201, 310–314.
[5] Pan C., Xu X., New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying, Surf. Coat. Tech., 2012, 206, 2265–2274.
[6] Rajan T.P.D., Pillai R.M., Pai B.C., Functionally graded Al–Al3Ni in-situ intermetallic composites: fabrication and microstructural characterization, J. Allo. Compd, 2008, 453, 4-7.
[7] Duque N.B., Melgarejo Z.H., Suarez O.M., Functionally graded aluminum matrix composites produced by centrifugal casting, Mater. Charact, 2005, 55, 167–171.
[8] Valhinho A., Botas J.D., Ariza E., Gomes J.R., Rocha L.A., Tribo corrosion studies in centrifugally cast Al-matrix SiC-reinforced functionally graded composites Mat. Sci. Forum, 2004, 455-456, 871-875.
[9] Rajan T.P.D., Pillai R.M., Pai B. C., Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites, Materials Characterization., 2010, 61, 923-928.
[10] Radhika N., Mechanical properties and abrasive wear behavior of functionally graded Al-Si12Cu/Al2O3 metal matrix composite, Trans. Indian Inst. Met., 2017, 70(1) 145–157
[11] El-Hadada Sh., Satoa H., Watanabe Y., Wear of Al/Al3Zr functionally graded materials fabricated by centrifugal solid-particle method, J. Mat. Proc. Tech., 2010, 210(15) 2245-2251.
[12] Matsuda K., Watanabe Y., Fukui Y., Particle size distributions in in situ Al–Al3Ni FGMs fabricated by centrifugal in situ method, Ceramic Trans, 2001, 114, 1–8.
[13] El-Hadad Sh., Sato H., Wantanab Y., Fabrication of Al-Al3Ti/Ti3Al functionally graded materials under a centrifugal force, Materials., 2010, 9, 4639-4656.
[14] صمدی ا.، غایب‌لو م.، آزادی آ.، تاثیر افزودن آهن بر ریزساختار درجه‌بندی شده کامپوزیت Al-13.8 wt.Mg2Si در ریخته‌گری گریز از مرکز، مهندسی متالورژی، 1394، 57، 53-45.
[15] شهبازخانی ح.ر.، صمدی ا.، تأثیر دمای فوق‌گداز و ضخامت نمونه بر رفتار و ریزساختار درجه‌بندی شده آلیاژ هایپریوتکتیکAl-Cu  ریخته‌گری شده به روش گریز از مرکز، ریخته‌گری، 1388، 93، 27-21.
[16] Samadi A., Shahbazkhani H.R., Effect of pouring temperature and casting thickness on distribution gradient of in situ formed Al2Cu particles during centrifugal casting of hypereutectic Al–Cu alloy, International Journal of Cast Metals Research., 2014, 27, 129-134.
[17] Chen W., Wang Q., Zai Ch., Ma Ch., Zhu Y., He W., Functionally graded Zn-Al-Si in-situ composites fabricated by centrifugal casting, J. Mat. Sci. Lett., 2001, 20, 823-826.
[18] Lin X., Liu Ch., Xiao H., Fabrication of Al–Si–Mg functionally graded materials tube reinforced with in situ Si/Mg2Si particles by centrifugal casting, Comp.: Part B, 2013, 45, 8–21.
[19] امرایی ح.، صمدی ا.، وجد ا.، ایجاد ریز ساختار هدفمند در آلیاژ هیپویوتکتیک Al-11 wt.% Mg2Si با استفاده از روش ریخته‌گری گریز از مرکز، مجله مواد نوین، 1389، 1(1) 18-11
[20] صمدی ا.، غایب‌لو م.، تأثیر افزودن جوانه‌زای Al-5Ti-B بر درجه‌بندی ریزساختار استوانه ریخته شده از کامپوزیت Al-13.8 wt. %Mg2Si به روش ریخته‌گری گریز از مرکز، مجله مواد پیشرفته در مهندسی، شماره 2، تابستان 1394، 59-49
[21] Kumar S., Subramaniya S.V., Murty B.S., Functionally graded Al alloy matrix in situ composite, J. Metal. Mater. Trans., 2010, 41A, 242-254.