بررسی تاثیر بهسازی تبریدی بر ریزساختار و اندیس کیفیت کامپوزیت Al-15Mg2Si

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 گروه مهندسی مواد و متالورژی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

2 دانشکده مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی (ره) (IKIU)، قزوین، ایران

10.22034/frj.2020.210848.1112

چکیده

کامپوزیت‌های ‏Al-Mg2Si‏ به‌دلیل استحکام ویژه مناسب و خواص تریبولوژیکی عالی در صنایع خودروسازی و هوا-فضا مورد ‏استفاده قرار می‌گیرند. دست‌یابی به خواص برتر در این کامپوزیت‌ها، مستلزم کنترل صحیح مورفولوژی، ابعاد و نحوه توزیع ‏ذرات ‏Mg2Si‏ در زمینه است. در این تحقیق، تاثیر افزایش سرعت انجماد (بهسازی تبریدی) بر ساختار و اندیس کیفیت ‏کامپوزیت ‏Al-15Mg2Si‏ بررسی شده است. عملیات ریخته‌گری نمونه‌های کامپوزیتی در قالب‌های مختلف با سرعت انجماد ‏متوسط متفاوت (7/2، 5/5، 1/17 و ‏ 5/57 درجه سانتیگراد بر ثانیه) انجام شد. بر اساس نتایج مطالعات ریزساختاری و آنالیز تصویری، با ‏افزایش سرعت انجماد، ابعاد ذرات بین‌فلزی ‏Mg2Si‏ کاهش یافته و توزیع ذرات در زمینه بهبود می‌یابد. افزایش سرعت ‏انجماد علاوه بر این موجب افزایش سختی زمینه و کاهش اندازه دانه‌ها می‌شود به‌گونه‌ای که با افزایش سرعت انجماد از 7/2 ‏به ‏5/57 درجه سانتیگراد بر ثانیه اندازه متوسط دانه‌ها حدود 93 درصد کاهش می‌یابد. این تغییرات ساختاری موجب بهبود استحکام کششی، ‏درصد ازدیاد طول و در نتیجه اندیس کیفیت کامپوزیت می‌شود. اندیس کیفیت نمونه منجمد شده تحت سرعت ‏5/57 ‏ درجه سانتیگراد بر ثانیه حدود 240 درصد بیش از مقدار مربوطه در کامپوزیت منجمد شده تحت سرعت  7/2 درجه سانتیگراد بر ثانیه است. ‏

کلیدواژه‌ها

موضوعات


[1]     Emamy M., Nemati N., Heidarzadeh A., The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15%Mg2Si composite, Materials Science and Engineering: A, 2010, 527(12) 2998-3004.
[2]     Lin J., Bai G., Liu Z., Niu L., Li G., Wen C., Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg2Si/Al composite, Materials Chemistry and Physics. 2016, 178, 112-118.
[3]     Nadim A., Taghiabadi R., Razaghian-Noghani M.T., Ghoncheh M.H., Effect of Fe-impurity on tribological properties of Al-15Mg2Si composite, Transactions of Nonferrous Metals Society of China, 2018, 28(6) 1084-1093.
[4]     Qin Q., Li W., The formation and characterization of the primary Mg2Si dendritic phase in hypereutectic Al-Mg2Si alloys, Materials Transactions, 2016, 57(2) 85-90.
[5]     Srinivas V., Singh V., Development of in situ as cast Al–Mg2Si particulate composite: microstructure refinement and modification studies, Transactions of the Indian Institute of Metals, 2012, 65(6) 759-764.
[6]     Fatemi-Jahromi F., Emamy M., An investigation into high temperature tensile behavior of hot-extruded Al–15wt%Mg2Si composite with Cu-P addition, Manufacturing Science and Technology, 2015, 3(4) 160-169.
[7]     Moussa M.E., Waly M.A., El-Sheikh A.M., Effect of Ca addition on modification of primary Mg2Si, hardness and wear behavior in Mg–Si hypereutectic alloys, Journal of Magnesium and Alloys, 2014, 2(3) 230-238.
[8]     Nasiri N., Emamy M., Malekan A., Norouzi M.H., Microstructure and tensile properties of cast Al–15% Mg2Si composite: Effects of phosphorous addition and heat treatment, Materials Science and Engineering: A, 2012, 556, 446-453.
[9]     Ghandvar H., Idris M.H., Ahmad N., Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in-situ composites, Journal of Alloys and Compounds. 2018, 751, 370-390.
[10]  Zamani R., Mirzadeh H., Emamy M., Magnificent grain refinement of Al-Mg2Si composite by hot rolling, Journal of Ultrafine Grained and Nanostructured Materials, 2018, 51(1) 71-76.
[11]  Jiang W., Xu X., Zhao Y., et al., Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite, Materials Science and Engineering: A. 2018, 721, 263-273.
[12]  Samadi F., Emamy M., Honarbakhsh Raouf A., Akrami A., Effect of heat treatment on the mocrostructure, hardness, and wear properties of Al-15Mg2Si-3Cu with different contents of Zn, Manufacturing Science and Technology, 2015, 3(4) 189-195.
[13]  Saffari S., Akhlaghi F., Microstructure and mechanical properties of Al-Mg2Si composite fabricated in-situ by vibrating cooling slope. Transactions of Nonferrous Metals Society of China, 2018, 28(4) 604-612.
[14]  Chegini M., Shaeri M., Taghiabadi R., Chegini S., Djavanroodi F., The correlation of microstructure and mechanical properties of in-situ Al-Mg2Si cast composite processed by equal channel angular pressing, Materials, 2019, 12(9) 1553.
[15]  Moharrami A., Razaghian A., Emamy M., Taghiabadi R., Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20wt% Mg2Si composite, Journal of Tribology, 2019, 141(12) 122202. https://doi.org/10.1115/1.4044672.
[16]  Nordin N.A., Farahany S., Ourdjini A., Abu Bakar T.A., Hamzah E., Refinement of Mg2Si reinforcement in a commercial Al–20% Mg2Si in-situ composite with bismuth, antimony and strontium, Materials Characterization, 2013, 86, 97-107.
[17]  Wang H., Liu F., Chen L., Zha M., Liu G., Jiang Q., The effect of Sb addition on microstructures and tensile properties of extruded Al-20Mg2Si-4Cu alloy, Materials Science and Engineering: A, 2016, 657, 331-338.
[18]  Zhao Y.G., Qin Q.D., Zhou W., Liang Y.H., Microstructure of the Ce-modified in situ Mg2Si /Al–Si–Cu composite, Journal of Alloys and Compounds, 2005, 389(1-2) L1-L4.
[19]  Wang L., Guo E., Ma B., Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys, Journal of Rare Earths, 2008, 26(1) 105-109.
[20]  Guo E.J., Ma B.X., Wang L.P., Modification of Mg2Si morphology in Mg–Si alloys with Bi. Journal of Materials Processing Technology, 2008, 206(1-3) 161-166.
[21]  McDonald S.D., Dahle A.K., Taylor J.A., StJohn D.H., Modification-related porosity formation in hypoeutectic aluminum-silicon alloys, Metallurgical and Materials Transactions: B, 2004, 35(6) 1097-1106.
[22]  Tian L., Guo Y., Li J., Xia F., Liang M., Bai Y., Effects of solidification cooling rate on the microstructure and mechanical properties of a cast Al-Si-Cu-Mg-Ni piston alloy, Materials, 2018, 11(7) 1230.
[23]  Hosseini V.A., Shabestari S.G., Gholizadeh R., Study on the effect of cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique, Materials and Design, 2013, 50, 7-14.
[24]  Tiryakioğlu M., Staley J.T., Campbell J., Evaluating structural integrity of cast Al–7%Si–Mg alloys via work hardening characteristics, Materials Science and Engineering: A, 2004, 368(1-2) 231-238.
[25]  محمدی م.، تقی‌آبادی ر.، نظری م.، تاثیر عناصر بهساز در بهبود اندیس کیفیت آلیاژ آلومینیم 356A قبل و بعد از عملیات حرارتی 6T، پژوهش‌نامه ریخته‌گری، 1397، 2(1) 25-11.
[26]  Drouzy M., Jacob S., Richard M., Interpretation of tensile results by means of quality index and probable yield strength, AFS International, Cast Metals Research Journal, 1980, 5, 43-50.
[27]  Vušanović I., Šarler B., Krane M.J.M., Microsegregation during the solidification of an Al–Mg–Si alloy in the presence of back diffusion and macrosegregation, Materials Science and Engineering: A, 2005, 413-414, 217-222.
[28]  Liang G., Ali Y., You G., & Zhang M.X., Effect of cooling rate on grain refinement of cast aluminium alloys, Materialia, 2018, 3, 113–121.
[29]  Stefanescu D.M., Science and Engineering of Casting Solidification, Kluwer Academic/Plenium Publishers, NewYork, 2002.
[30]  Wang D., Zhang H, Guo C., Wu H., Cui J., Effect of cooling rate on growth and transformation of primary Mg2Si in Al–Mg2Si in situ composites, Journal of Materials Research, 2018, 33(20) 3458-3465.
[31]  Li C., Wu Y.Y., Li H., Liu X.F., Morphological evolution and growth mechanism of primary Mg2Si phase in Al–Mg2Si alloys, Acta Materialia, 2011, 59(3) 1058-1067.
[32]  Ma Z.Y., Sharma S.R., Mishra R.S., Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing, Metallurgical and Materials Transactions A., 2006, 37(11) 3323-3336.
[33]  Caceres C.H., A Rationale for the quality index of Al-Si-Mg casting alloys, International Journal of Cast Metals Research, 1998, 10, 293-299.
[34] Kobayashi T., Strength and fracture of aluminum alloys, Materials Science and Engineering, 2000, A280, 8–16.