اثر کربن بر ریزساختار و خواص مکانیکی سوپرآلیاژ Haynes 25

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 کارشناسی ارشد متالورژی، پژوهشکده مواد، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار، پژوهشکده مواد، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استاد، پژوهشکده مواد - دانشگاه صنعتی مالک اشتر،‎ ‎تهران، ایران‎ ‎

4 کارشناس ارشد متالورژی، پژوهشکده مواد، دانشگاه صنعتی مالک اشتر، تهران، ایران

10.22034/frj.2020.245305.1126

چکیده

در این پژوهش اثر میزان 05/0، 1/0 و 15/0 درصد وزنی کربن بر ریزساختار و خواص مکانیکی سوپرآلیاژ 25  Haynesدر حالت آنیل بررسی شده است. آلیاژها به روش ذوب القایی تحت خلأ ریخته‌گری، در کوره‌ی ذوب مجدد تحت سرباره‌ی الکتریکی تصفیه و سپس در دمایC˚  1200 به مدت 30 دقیقه، آنیل انحلالی شدند. نتایج نشان داد که کاربید نوع M6C (غنی از تنگستن) در آلیاژهای حاوی کربن در ساختار رشد و با افزایش کربن، میزان آنها افزایش یافت. با افزایش کربن از 05/0 به 15/0درصدوزنی، اندازه دانه از 44 به 35 میکرومتر کاهش پیدا کرده؛ زیرا کاربیدها مانع از رشد شده و مکان‌های مستعد جوانه‌زنی دانه‌های جدید را نیز فراهم آورده‌اند. با افزایش میزان کربن به موجب ریزدانگی و افزایش کسر حجمی کاربیدها، سختی از 255 به 290 ویکرز، استحکام تسلیم از 450 به MPa  501 و استحکام کششی نهایی از 946 به MPa 1088 افزایش یافته و در مقابل میزان انعطاف‌پذیری کاهش اندکی یافت.

کلیدواژه‌ها

موضوعات


[1]  Donachie M.J., Donachie S.J., Superalloys: a technical guide: ASM international, 2002.
[2]  Lee S., Liaw P.K., High-temperature tensile-hold crack-growth behavior of Hastelloy X alloy compared to Haynes 188 and Haynes 230 alloys, Mechanics of Time-Dependent Materials, 2008, 12, 31-44.
[3]  Favre J., Koizumi Y., Deformation behavior and dynamic recrystallization of biomedical Co-Cr-W-Ni (L-605) alloy, Metallurgical and Materials Transactions A, 2013, 44, 2819-2830.
[4]  Mori M., Effect of cold rolling on phase decomposition in biomedical Co–29Cr–6Mo–0.2 N alloy during isothermal heat treatment at 1073 K, Journal of Alloys and Compounds, 2014, 612, 273-279.
[5]  Klarstrom D., Wrought cobalt-base superalloys, Journal of Materials Engineering and Performance, 1993, 2, 523-530.
[6]  Tawancy H., Ishwar V.R., Lewis B.E., On the fcc→ hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25), Journal of Materials Science Letters, 1986, 5, 337-341.
[7]  Jiang W., Guan H.R., Secondary carbide precipitation in a directionally solified cobalt-base superalloy, Metallurgical and Materials Transactions, 1999, 30, 513-520.
[8]  Pu S., Zhang J., Recrystallization in a directionally solidified cobalt-base superalloy, Materials Science and Engineering: A, 2008, 480, 428-433.
[9]  Ueki K., Ueda K., Microstructure and Mechanical Properties of Heat-Treated Co-20Cr-15W-10Ni Alloy for Biomedical Application, Metallurgical and Materials Transactions A, 2016, 47, 2773-2782.
[10] Inoue A., Masumoto T., Carbide reactions (M3C→ M7C3→ M23C6→ M6C) during tempering of rapidly solidified high carbon Cr-W and Cr-Mo steels, Metallurgical and Materials Transactions A, 1980, 11, 739-747.
[11] Huron E.S., Leon H., Superalloy, John Wiley & Sons, 2012.
[12] Yukawa N., Sato K., Correlation between microstructure and stress rupture properties of A Co--Cr--Ni--W (HS-25) alloy, 1968, Nagoya Univ., Japan.
[13] Gui W., zhang H., The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature, Journal of Alloys and Compounds, 2017, 695, 1271-1278.
[14] Sorensen D., Mokhoyan K.A., Investigation of secondary hardening in Co–35Ni–20Cr–10Mo alloy using analytical scanning transmission electron microscopy, Acta Materialia, 2014, 63, 63-72.
[15] Lee S. H., Effect of carbon addition on microstructure and mechanical properties of a wrought Co-Cr-Mo implant alloy, Materials transactions, 2006, 47, 287-290.
[16] Yamanaka K., Mori M., Development of new Co–Cr–W-based biomedical alloys: effects of microalloying and thermomechanical processing on microstructures and mechanical properties, Materials & Design, 2014, 55, 987-998.
[17] Wu X., Liu R., Yao M., Influence of carbon content in cobalt based superalloys on mechanical and wear properties, Journal of Engineering Materials and Technology, 2004, 126, 204-212.
[18] F90-01: Standard Specification for Wrought Cobalt-20Chromium-15Tungsten-10Nickel Alloy for Surgical Implant Applications (UNS R30605), ASTM International, West Conshohocken, 2005.
[19] ASTM E 8M, Standard test methods of tension testing of metallic materials [metric], Annual Book of ASTM Standards Vol. 3, ed., 2003.
[20] ASTM E 92, Standard Test Method for Vickers Hardness of Metallic Materials, Vol. 2, West Conshohocken, PA: ASTM International, 2003.
[21] Yamanaka K., Mori M., Chiba A., Influence of carbon addition on mechanical properties and microstructures of Ni-free Co–Cr–W alloys subjected to thermomechanical processing, Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 274-285.
[22] Mori M., Yammanaka K., Effect of carbon on the microstructure, mechanical properties and metal ion release of Ni-free Co–Cr–Mo alloys containing nitrogen, Materials Science and Engineering: C, 2015, 55, 145-154.
[23] Yamanaka K., Chiba A., Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys, Materials Science and Engineering: C, 2014, 40, 127-134.
[24] Teague J., cerreta E., Tensile properties and microstructure of Haynes 25 alloy after aging at elevated temperatures for extended times, Metallurgical and Materials Transactions A, 2004, 35, 2767-2781.
[25] Joseph C., Influence of heat treatment on the microstructure and tensile properties of Ni-base superalloy Haynes 282, Materials Science and Engineering: A, 2017, 679, 520-530.