تاثیر عملیات پیرسازی بر خواص مکانیکی دما بالای سوپرآلیاژ نسل جدید Co-7Al-7W-4Ti-2Ta

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوری‌های‌ ساخت، تهران، ایران

2 استادیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوری‌های‌ ساخت، تهران، ایران ‏

3 کارشناس ارشد،‌ دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوری‌های ‌ساخت، تهران، ایران

10.22034/frj.2020.245029.1125

چکیده

هدف از انجام این پژوهش، ارزیابی تاثیر عملیات پیرسازی بر خواص گسیختگی تنشی و فشار گرم سوپرآلیاژ پایه کبالت نسل جدید ‏با ترکیب ‏Co-7Al-7W-4Ti-2Ta‎‏ است. پس از ذوب سوپرآلیاژ نامبرده به روش ‏VIM‏ و ذوب مجدد به روش ‏VAR، شمش به دست ‏آمده تحت همگن‌سازی در دمای 1250 درجه سانتیگراد و به مدت 10 ساعت قرار گرفت. سپس عملیات پیر‌سازی روی نمونه‌های همگن‌سازی ‏شده در دمای ‎‏ 800 درجه سانتیگراد طی زمان‌های 8، 16 و 24 ساعت انجام شد. پس از بررسی‌های ریزساختاری و آنالیز فازی بوسیله ‏میکروسکوپ الکترونی و آزمایش الگوی تفرق اشعه ‏ایکس، خواص مکانیکی دما بالا شامل آزمایش‌های فشار گرم و گسیختگی تنشی ‏انجام یافت. نتایج نشان داد که آلیاژ مذکور در حالت ریختگی حاوی فازهای گاما، گاماپرایم، بتا و آلفا‏ است که با انجام عملیات همگن‌سازی ‏فازهای گاماپرایم، بتا و آلفا‏ در داخل فاز گاما انحلال می‌یابند. با پیرسازی آلیاژ مورد مطالعه رسوب‌های گاماپرایم جوانه‌زنی و رشد می‌کنند که با ‏افزایش زمان پیرسازی کسر حجمی و اندازه این رسوب‌ها نیز افزایش می‌یابد. نتایج آزمایش فشار روی نمونه پیرسازی شده به مدت ‏‏16 ساعت در محدوده دمایی ‏‎500 تا 1000 درجه سانتیگراد نشان داد که استحکام آلیاژ در دمای 700 درجه سانتیگراد افزایش یافت که نشان دهنده بروز پدیده ‏تسلیم نامتعارف به واسطه رسوب‌دهی فاز گاماپرایم است. همچنین حداکثر مقاومت در برابر گسیختگی تنشی در دمای ‏‎770 درجه سانتیگراد تحت تنش ‏‏300 مگاپاسکال و به مدت 22 ساعت مربوط به نمونه‌ای بود که در دمای 800 درجه سانتیگراد به مدت 16 ساعت پیرسازی شده بود.‏

کلیدواژه‌ها

موضوعات


[1] Gu Y., Harada H., Cui C., Ping D., Sato A., Fujioka J., New Ni–Co-base disk superalloys with higher strength and creep resistance, Scripta Materialia, 2006, 9, 815-818.
[2] Bocchini P.J., Microstructure and mechanical properties in gamma (face-centered cubic)+gamma prime (L12) precipitation-strengthened cobalt-based superalloys, Ph.D. Thesis., Northwestern University, 2015.
[3] Yan H.Y., Vorontsov V.A., Dye D., Alloying effects in polycrystalline γ′ strengthened Co–Al–W base alloys, Intermetallics, 2014, 48, 44-53.
[4] Bauer A., Neumeier S., Pyczak F., Göken M., Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants, Scripta Materialia, 2010, 12, 1197-1200.
[5] Bauer A., Neumeier S., Pyczak F., Singer R.F., Göken M., Creep properties of different γ′-strengthened Co-base superalloys, Materials Science and Engineering, 2012, 550, 333-341.
[6] Zhu L., Wei C., Qi H., Jiang L., Jin Z., Zhao J.C., Experimental investigation of phase equilibria in the Co-rich part of the Co-Al-X (X= W, Mo, Nb, Ni, Ta) ternary systems using diffusion multiples, Journal of Alloys and Compounds, 2017, 691, 110-118.
[7] Ding X.F., Mi T., Xue F., Zhou H.J. Wang M.L., Microstructure formation in γ–γ′ Co–Al–W–Ti alloys during directional solidification, Journal of Alloys and Compounds, 2014, 599, 159-163.
[8] McDevitt E.T., Feasibility of cast and wrought Co-Al-WX gamma-prime superalloys, Materials Science Forum, Trans Tech Publications, 2014, 783, 1159-1164.
[9] Mughrabi H., The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys with special reference to the new γ′-hardened Cobalt-base superalloys, Acta Materialia, 2014, 81, 21-29.
[10] Xue, F., Zhou, H., Chen, X., Shi, Q., Chang, H., Wang, M., Ding, X. and Feng, Q., Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982 C, MATEC Web of Conferences, EDP Sciences, 2014, 14, 15002.
[11] Povstugar I., Choi P-Pa., Neumeier S., Bauer A., Zenk C.H., Göken M., Raabe D., Elemental Partitioning and mechanical properties of Ti-and Ta-containing Co–Al–W-base superalloys studied by atom probe tomography and nanoindentation, Acta Materialia, 2014, 78, 78-85.
[12] Casas R., Gálvez F., Campos M., Microstructural development of powder metallurgy Cobalt-based superalloys processed by field assisted sintering techniques (FAST), Materials Science and Engineering,     2018, 724, 461-468.
[13] Zhou X., Fu H., Zhang Y., Xu H., Xie J., Effect of Ta and Ti on the solidification characteristics of novel γ′-strengthened Co-base superalloys, Journal of Alloys and Compounds, 2018, 768, 464-475.
[14] Coujou A., Coulomb P., Suzuki effect: some observations of in situ electron microscopy, Scripta Metallurgica, 1988, 22(12) 1841-1846.
[15] Longquan S., Northwood D.O., Cao Z., The properties of a wrought biomedical cobalt-chromium alloy, Journal of Materials Science, 1994, 29(5) 1233-1238.
[16] Suzuki A., Denolf G., Pollock T. M., Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys, Scripta Materialia 2007, 56 (5) 385-388.
[17] Makineni S., Samanta A., Rojhirunsakool T., Alam T., N. B, Singh A., Banerjee R., Chattopadhyay K., A new class of high strength high temperature Cobalt based γ-γ' Co-Mo-Al alloys stabilized with Ta addition, Acta Materialia, 2015, 97(15) 2-40.