نقش باریم در تغییرات ساختاری، خواص مکانیکی و رفتار سایشی کامپوزیت Al-20Mg2Si

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، قزوین، ایران.‏

2 استادیار، موسسه بین‌المللی تکنولوژی مالزی-ژاپن، دانشگاه تکنولوژی مالزی، کوالالامپور، مالزی.‏

3 استادیار، گروه مهندسی شیمی، دانشگاه ازبکستان جدید، تاشکند، جمهوری ازبکستان‎.‎

10.22034/frj.2023.350479.1158

چکیده

در این تحقیق تاثیر افزودن عنصر باریم با درصدهای مختلف 1/0، 2/0، 4/0، 6/0، 8/0 و 1% وزنی بر روی فازهای مختلف، خواص مکانیکی و مقاومت سایشی کامپوزیت Al-20Mg2Si مورد بررسی قرار‌گرفت. نتایج نشان‌داد که افزودن 2/0% باریم موجب بهسازی ذرات Mg2Si اولیه شد. هرچند که با افزودن بیشتر این اثر از بین رفت. ذرات Mg2Si اولیه از حالت دندریتی خشن به چند‌ضلعی کوچک تغییر کرد. اندازه متوسط آنها از 5/1178 میکرومتر به 1/289 میکرومتر و سطح نرمال ذرات از 1 به 7/0 کاهش یافت. نسبت ابعادی ذرات از 2/1 به 1/1 کاهش و تعداد ذرات از 9 به 41 در میلی‌متر مربع افزایش یافت. مکانیزم بهسازی باریم می‌تواند جوانه‌زنی غیر‌همگن برروی ذرات Al2Si2Ba و نیز محدود‌کردن رشد باشد. همچنین ساختار Mg2Si یوتکتیکی به ورقه‌ای ریز تبدیل شد. افزودن باریم موجب ظاهر‌شدن ترکیبات α-Al15Si2(Fe,Mn)3 علاوه بر β-Al5FeSi شد. هرچند که باریم تغییر خاصی در فازهای Al5Mg8Si6Cu2 و Al2Cuایجاد نکرد. ضریب کشسانی، استحکام تسلیم، استحکام کششی نهایی و درصد افزایش طول، انرژی ضربه و سختی بترتیب بمیزان 22% ، 24% ، 30%، 20%، 33% و19% پس از افزودن 2/0% باریم افزایش یافت. بخش زیادی از سطح شکست نمونه‌ها از صفحات کلیواژ تشکیل شده بود که بیانگر حالت شکست تُرد بود که با مقادیر کم درصد ازدیاد طول متناسب بود. بهسازی باعث کاهش نرخ سایش از 9/1 به mm3/km 2/1، کاهش ضریب اصطکاک از 58/0 به 54/0 و همچنین کاهش وزن از 1/7 به 8/4 میلی‌گرم برای مسافت طی شده 2000 متر شد.

کلیدواژه‌ها

موضوعات


[1]  Wu X.-F., Wang Z.-C., Wang K.-Y., Zhao R.-D., Wu F.-F., Microstructural refinement and tensile properties enhancement of Al-10Mg2Si cast alloys by copper addition, J Alloys Compd., 2021, 163058.
[2]  Tong X., Zhang D., Wang K., Lin J., Liu Y., Shi Z., Li Y., Lin J., Wen C., Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites, Materials Science and Engineering: A. 733, 2018, 9–15.
[3]  Yu H.C., Wang H.Y., Chen L., Zha M., Wang C., Li C., Jiang Q.C., Spheroidization of primary Mg2Si in Al-20Mg2Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process, Materials Science and Engineering: A. 685, 2017, 31–38.
[4]  Hadian R., Emamy M., Varahram N., Nemati N., The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite, Materials Science and Engineering A.490, 2008, 250–257.
[5]  YANG C., LI Y., DANG B., LÜ H., LIU F., Effects of cooling rate on solution heat treatment of as-cast A356 alloy, Transactions of Nonferrous Metals Society of China, 2015, (25), 3189–3196.
[6]  Du J., Iwai K., Modification of Primary Mg2Si Crystals in Hypereutectic Mg-Si Alloy by Application Alternating Current, Mater Trans., 2009, (50), 562–569.
[7]  Farahany S., Nordin N.A., Ghandvar H., Simultaneous effect of melt superheating and holding time on structural ‎changes, solidification characteristics, and hardness of Al-20Mg2Si-2Cu ‎composite‎, Founding Research Journal., 2021, (5), 93–106.
[8]  Farahany S., Nordin N.A., Ourdjini A., Abu-Bakar T., Hamzah E., Idris M.H., Hekmat-Ardakan A., The sequence of intermetallic formation and solidification pathway of an Al-13Mg-7Si-2Cu in-situ composite, Mater Charact., 2014, (98), 119–129.
[9]  Zhao Y.G., Qin Q.D., Hang Y.H., Zhou W., Jiang Q.C., In-situ Mg2Si/Al-Si-Cu composite modified by strontium, J Mater Sci., 2005, (40), 1831–1833.
[10] Qin Q.D., Zhao Y.G., Liu C., Cong P.J., Zhou W., Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite, J Alloys Compd. , 2008, (454), 142–146.
[11] Ren B., Liu Z.X., Zhao R.F., Zhang T.Q., Liu Z.Y., Wang M.X., Weng Y.G., Effect of Sb on microstructure and mechanical properties of Mg2Si/Al-Si composites, Transactions of Nonferrous Metals Society of China (English Edition), 2010, (20), 1367–1373.
[12] Wang H.Y., Li Q., Liu B., Zhang N., Chen L., Wang J.G., Jiang Q.C., Modification of primary Mg2Si in Mg-4Si alloys with antimony, Metal Mater Trans A Phys Metal Mater Sci., 2012, (43), 4926–4932.
[13] Guo E.J., Ma B.X., Wang L.P., Modification of Mg2Si morphology in Mg-Si alloys with Bi, J Mater Process Technol., 2008, (206), 161–166.
[14] WU X., ZHANG G., WU F., Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite, Transactions of Nonferrous Metals Society of China, 2013, (23), 1532–1542.
[15] Nordin N.A., Farahany S., Ourdjini A., Abu Bakar T.A., Hamzah E., Refinement of Mg2Si reinforcement in a commercial Al-20%Mg2Si in-situ composite with bismuth, antimony and strontium, Mater Charact., 2013, (86), 97–107.
[16] Li Z., Li C., Gao Z., Liu Y., Liu X., Guo Q., Yu L., Li H., Corrosion behavior of Al-Mg2Si alloys with/without addition of Al-P master alloy, Mater Charact., 2015, (110), 170–174.
[17] Qin Q.D., Zhao Y.G., Zhou W., Cong P.J., Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite, Materials Science and Engineering A., 2007, (447), 186–191.
[18] Emamy M., Khorshidi R., Raouf A.H., The influence of pure Na on the microstructure and tensile properties of Al-Mg2Si metal matrix composite, Materials Science and Engineering A., 2011, (528), 4337–4342.
[19] Tang P., Yu F., Teng X., Peng L., Wang K., Effect of beryllium addition and heat treatment on the microstructure and mechanical properties of the 15%Mg2Si/Al-8Si composite, Mater Charact., 2021, (180), 111416.
[20] Nordin N.A., Farahany S., Abu Bakar T.A., Hamzah E., Ourdjini A., Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al–20%Mg2Si–xCe in situ composite solidified at a slow cooling rate, J Alloys Compd., 2015, (650), 821–834.
[21] Jafari Nodooshan H.R., Liu W., Wu G., Bahrami A., Pech-Canul M.I., Emamy M., Mechanical and tribological characterization of Al-Mg2Si composites after yttrium addition and heat treatment, J Mater Eng. Perform., 2014, (23), 1146–1156.
[22] Ghandvar H., Idris M.H., Ahmad N., Emamy M., Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15%Mg2Si in-situ composite, Mater Charact., 2018, (135), 57–70.
[23] Wang K.Y., da Zhao R., Wu F.F., Wu X.F., Chen M.H., Xiang J., Chen S.H., Improving microstructure and mechanical properties of hypoeutectic Al-Mg2Si alloy by Gd addition, J Alloys Compd., 2020, (813), 152178.
[24] Li C., Fan Z., Jia H.L., Wang C., Ma P.K., Ren M.W., Wang H.Y., Synergetic modification effects on primary Mg2Si in Al-20Mg2Si alloy induced by the co-addition of beryllium and antimony, J Alloys Compd., 2021, (888), 161477.
[25] Zoroddu M.A., Aaseth J., Crisponi G., Medici S., Peana M., Nurchi V.M., The essential metals for humans: a brief overview, J Inorg Biochem., 2019, (195), 120–129.
[26] Chałupnik S., Wysocka M., Chmielewska I., Samolej K., Radium removal from mine waters with the application of barium chloride and zeolite: comparison of efficiency, Journal of Sustainable Mining, 2019, (18), 174–181.
[27] Peana M., Medici S., Dadar M., Antonietta Zoroddu M., Pelucelli A., Chasapis T.C., Bjørklund G., Environmental barium: potential exposure and health-hazards, Arch Toxicol., 2021, (95), 2605–2612.
[28] Chen K., Li Z.Q., Liu J.S., Yang J.N., Sun Y.D., Bian S.G., The effect of Ba addition on microstructure of in situ synthesized Mg2Si/Mg–Zn–Si composites, J Alloys Compd., 2009, (487), 293–297.
[29] Nordin N.A., Farahany S., Abu Bakar T.A., Ourdjini A., Mazlan S.A., Aziz S.A.A., Yahaya H., Effect of barium on the structure and characteristics of Mg2Si reinforced particles Al–Mg2Si–Cu in situ composite, in: U. Sabino, F. Imaduddin, A.R. Prabowo (Eds.), Proceedings of the 6th International Conference and Exhibition on Sustainable Energy and Advanced Materials, Springer Singapore, Singapore, 2020, 265–274.
[30] Ghandvar H., Jabbar K.A., Idris M.H., Ahmad N., Jahare M.H., Rahimian Koloor S.S., Petru M., Influence of barium addition on the formation of primary Mg2Si crystals from Al–Mg–Si melts, Journal of Materials Research and Technology, 2021, (11), 448–465.
[31] Li C., Wu Y., Li H., Wu Y., Liu X., Effect of Ni on eutectic structural evolution in hypereutectic Al–Mg2Si cast alloys, Materials Science and Engineering: A., 2010, (528), 573–577.
[32] Ma Z., Samuel A.M., Samuel F.H., Doty H.W., Valtierra S., A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity, Materials Science and Engineering: A., 2008, (490), 36–51.
[33] Tong X., Wu G., Zhang L., Liu W., Ding W., Achieving low-temperature Zr alloying for microstructural refinement of sand-cast Mg-Gd-Y alloy by employing zirconium tetrachloride, Mater Charact., 2021, (171), 110727.
[34] Ashkevary S., Shabestari S., Investigation on effects of melt temperature on solidification behavior of ‎ in-situ Al-Mg2Si composite using cooling curve thermal analysis‎, Founding Research Journal, 2020, (4), 1–9.
[35] Li C., Liu X., Wu Y., Refinement and modification performance of Al-P master alloy on primary Mg2Si in Al-Mg-Si alloys, J Alloys Compd., 2008, (465), 145–150.
[36] Jin Y., Fang H., Wang S., Chen R., Su Y., Guo J., Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al–Mg2Si composites, Materials Science and Engineering: A., 2022, (831), 142227.
[37] Rao J., Zhang J., Liu R., Zheng J., Yin D., Modification of eutectic Si and the microstructure in an Al-7Si alloy with barium addition, Materials Science and Engineering A., 2018, (728).
[38] Li C., Wu Y.Y., Li H., Liu X.F., Morphological evolution and growth mechanism of primary Mg2Si phase in Al-Mg2Si alloys, Acta Mater., 2011, (59), 1058–1067.
[39] Khorshidi R., Honarbakhsh Raouf A., Emamy M., Campbell J., The study of Li effect on the microstructure and tensile properties of cast Al–Mg2Si metal matrix composite, J Alloys Compd., 2011, (509), 9026–9033.
[40] Nasiri N., Emamy M., Malekan A., Norouzi M.H., Microstructure and tensile properties of cast Al–15%Mg2Si composite: Effects of phosphorous addition and heat treatment, Materials Science and Engineering: A., 2012, (556), 446–453.
[41] Miracle D.B., Metal matrix composites – from science to technological significance, Compos Sci Technol., 2005, (65), 2526–2540.
[42] Sameezadeh M., Emamy M., Farhangi H., Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites, Mater Des., 2011, (32), 2157–2164.