بررسی خواص مکانیکی ، خوردگی و ریزساختار نانو بیو کامپوزیت هیبریدی Mg/2 FA/0.3 GNPs(Wt%) تولید شده توسط ریخته گری دو مرحله ی همزن مکانیکی و باز ذوب تحت فشار آرگون

نوع مقاله: مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندس مواد، دانشگاه حکیم سبزواری، سبزوار، ایران

2 استاد، مهندسی مواد، دانشگاه حکیم سبزواری، سبزوار و استاد، گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 استادیار، مهندسی مواد، دانشگاه فناوری های نوین، سبزوار، ایران

10.22034/frj.2019.196562.1096

چکیده

نانو ‌بیو‌کامپوزیت هیبریدی با زمینه آلیاژ منیزیم )%Mg-0.5Ca-0.8Mn (wt تقویت شده با 2درصد وزنی نانو ذرات فلوئور آپاتیت (FA) و 3/0 درصد وزنی نانو صفحات گرافن (GNPs) توسط فرآیند ریخته‌گری هم‌زن مکانیکی تولید و به منظور از بین رفتن حفرات ناشی از ریخته‌گری تحت فرآیند جدید ریخته‌گری تحت فشار آرگون باز‌ذوب شد. خواص مکانیکی از قبیل استحکام کششی توسط آزمایش کشش و خواص خوردگی توسط آزمایش الکتروشیمیایی، امپدانس و آزادسازی هیدروژن در محلول شبیه‌سازی محیط بدن مورد بررسی قرار گرفت. تغییرات ریزساختاری شامل پراکنش ذرات تقویت کننده و اندازه‌ی دانه‌ها با کمک میکروسکوپ نوری و میکروسکوپ الکترون روبشی مطالعه شد. نتایج حاصل نشان می‌دهد که استحکام کششی نهایی کامپوزیت 27 درصد بیشتر از آلیاژ پایه است و جریان خوردگی کامپوزیت 60 درصد کاهش نسبت به آلیاژ پایه یافته است. بررسی‌های ریزساختاری بیانگر کاهش اندازه دانه کامپوزیت (µm 175) نسبت به آلیاژ پایه (µm 448) است و تصاویر میکروسکوپ الکترون روبشی شکل‌گیری داربست گرافنی که دارای تاثیر مثبت در خواص مکانیکی و خوردگی است را نشان می‌دهد.

کلیدواژه‌ها


[1] Song Y.W., Shan D.Y., Han E.H., Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application, Materials Letters, 2008, 62(17-18) 3276-3279.
[2] Hiromoto S., Shishido T., Yamamoto A., Maruyama N., Somekawa H., Mukai T., Precipitation control of calcium phosphate on pure magnesium by anodization, Corrosion Science, 2008, 50(10) 2906-2913.
[3] Li N., Zheng Y., Novel magnesium alloys developed for biomedical application: a review, Journal of Materials Science and Technology, 2013, 29(6) 489-502.
[4] Asl S.K., Nemeth S., Tan M.J., Hydrothermally deposited protective and bioactive coating for magnesium alloys for implant application, Surface and Coatings Technology, 2014, 258, 931-937.
[5] Gaur S., Raman R.S., Khanna A.S., In vitro investigation of biodegradable polymeric coating for corrosion resistance of Mg-6Zn-Ca alloy in simulated body fluid, Materials Science and Engineering C, 2014, 42, 91-101.
[6] Pommiers S., Frayret J., Castetbon A., Potin-Gautier M., Alternative conversion coatings to chromate for the protection of magnesium alloys, Corrosion Science, 2014, 84, 135-146.
[7] Chen Y., Xu Z., Smith C., Sankar J., Recent advances on the development of magnesium alloys for biodegradable implants, Acta Biomaterialia, 2014, 10(11) 4561-4573.
[8] Witte F., Fischer J., Nellesen J., Vogt C., Vogt J., Donath T., Beckmann F., In vivo corrosion and corrosion protection of magnesium alloy LAE442, Acta Biomaterialia, 2010, 6(5)1792-1799.
[9] Saris N.E., Mervaala E., Karppanen H., Khawaja J.A., Lewenstam A., Magnesium: an update on physiological, clinical and analytical aspects, Clinica Chimica Acta, 2000, 294(1-2) 1-26.
[10] Gu X.N., Li N., Zhou W.R., Zheng Y.F., Zhao X., Cai Q.Z., Ruan L., Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy, Acta Biomaterialia, 2011, 7(4) 1880-1889.
[11] Wang H.X., Guan S.K., Wang X., Ren C.X., Wang L.G., In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process, Acta Biomaterialia, 2010, 6(5) 1743-1748.
[12] Emley E.F., Principles of Magnesium Technology, 1966.
[13] Fan J., Qiu X., Niu X., Tian Z., Sun W., Liu X., Li Y., Li W., Meng J., Microstructure, mechanical properties, in vitro degradation and cytotoxicity evaluations of Mg–1.5 Y–1.2 Zn–0.44 Zr alloys for biodegradable metallic implants. Materials Science and Engineering: C, 2013, 33(4) 2345-2352.
[14] Wang H., Guan S., Wang Y., Liu H., Wang H., Wang L., Ren C., Zhu S., Chen K., In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids and Surfaces B: Biointerfaces, 2011, 88(1) 254-259.
[15] Li M., Cheng Y., Zheng Y.F., Zhang X., Xi T.F., Wei S.C., Plasma enhanced chemical vapor deposited silicon coatings on Mg alloy for biomedical application, Surface and Coatings Technology, 2013, 228, S262-265.
[16]Meng E.C., Guan S.K., Wang H.X., Wang L.G., Zhu S.J., Hu J.H., Ren C.X., Gao J.H., Feng Y.S., Effect of electrodeposition modes on surface characteristics and corrosion properties of fluorine-doped hydroxyapatite coatings on Mg–Zn–Ca alloy, Applied Surface Science, 2011, 257(11) 4811-4816.
[17] Orlov D., Ralston K.D., Birbilis N., Estrin Y., Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Materialia, 2011, 59(15) 6176-6186.
[18] Lei T., Tang W., Cai S.H., Feng F.F., Li N.F., On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction, Corrosion Science, 2012, 54, 270-277.
[19] Turhan M.C., Li Q., Jha H., Singer R.F., Virtanen S., Corrosion behaviour of multiwall carbon nanotube/magnesium composites in 3.5% NaCl, Electrochimica Acta, 2011, 56(20) 7141-7148.
[20] Khalajabadi S.Z., Ahmad N., Yahya A., Yajid M.A., Samavati A., Asadi S., Arafat A., Kadir M.R., The role of titania on the microstructure, biocorrosion and mechanical properties of Mg/HA-based nanocomposites for potential application in bone repair, Ceramics International, 2016, 42(16) 18223-18237.
[21] Wang X., Zhang P., Dong L.H., Ma X.L., Li J.T., Zheng Y.F., Microstructure and characteristics of interpenetrating β-TCP/Mg–Zn–Mn composite fabricated by suction casting, Materials & Design (1980-2015) 2014, 54, 995-1001.
[22] Razavi M., Fathi M.H., Meratian M., Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications, Materials letters, 2010, 64(22) 2487-2490.
[23] Fathi M.H., Zahrani E.M., Fabrication and characterization of fluoridated hydroxyapatite nanopowders via mechanical alloying, Journal of Alloys and Compounds, 2009, 475(1-2) 408-414.
[24] Zahrani E.M., Fathi M.H., The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder, Ceramics International, 2009, 35(6) 2311-2323.
[25] Yoon B.H., Kim H.W., Lee S.H., Bae C.J., Koh Y.H., Kong Y.M., Kim H.E., Stability and cellular responses to fluorapatite–collagen composites, Biomaterials, 2005, 26(16) 2957-63.
[26] Gain A.K., Zhang L., Liu W., Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders, Materials & Design, 2015, 67, 136-144.
[27] Amaravathy P., Sathyanarayanan S., Sowndarya S., Rajendran N., Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications, Ceramics international, 2014, 40(5) 6617-6630.
[28] Mohajernia S., Pour-Ali S., Hejazi S., Saremi M., Kiani-Rashid A.R., Hydroxyapatite coating containing multi-walled carbon nanotubes on AZ31 magnesium: Mechanical-electrochemical degradation in a physiological environment, Ceramics International, 2018, 44(7) 8297-8305.
[29] Rashad M., Pan F., Asif M., Magnesium matrix composites reinforced with graphene nanoplatelets, Graphene Materials: Fundamentals and Emerging Applications, 2015, 20,151-189.
[30] Rashad M., Pan F., Liu Y., Chen X., Lin H., Pan R., Asif M., She J., High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method, Journal of Magnesium and Alloys, 2016, 4(4) 270-277.
[31] Rashad M., Pan F., Hu H., Asif M., Hussain S., She J., Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets, Materials Science and Engineering: A, 2015, 630, 36-44.
[32] Selvam M., Saminathan K., Siva P., Saha P., Rajendran V., Corrosion behavior of Mg/graphene composite in aqueous electrolyte, Materials chemistry and physics, 2016, 172, 129-136.
[33] Kim S., Ku S.H., Lim S.Y., Kim J.H., Park C.B., Graphene–biomineral hybrid materials, Advanced Materials, 2011, 23(17) 2009-2014.
[34] Wan C., Frydrych M., Chen B., Strong and bioactive gelatin–graphene oxide nanocomposites, Soft Matter, 2011, 7(13) 6159-6166.
[35] Xiang S., Wang X., Gupta M., Wu K., Hu X., Zheng M., Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties, Scientific reports, 2016, 12(6)38824-38837.
[36] Shen MJ, Zhang MF, Ying WF. Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites. Journal of Magnesium and Alloys. 2015, 3(2) 162-167.
[37] Deng KK, Wu K, Wang XJ, Wu YW, Hu XS, Zheng MY, Gan WM, Brokmeier HG. Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures. Materials Science and Engineering: A. 2010, 527(6) 1630-5.
[38]Rashad M., Pan F., Asif M., Tang A., Powder metallurgy of Mg–1% Al–1% Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) journal of Industrial and Engineering Chemistry, 2014, 20(6) 4250-4255.
[39]Moradi Z., Vaezzadeh M., Saeidi M., Temperature-dependent thermal expansion of grapheme, Physica A: Statistical Mechanics and its Applications, 2018, 512, 981-985.
[40] Jena H., Asuvathraman R., Kutty K.G., Thermal expansion and phase stability investigations on Cs-substituted nanocrystalline calcium hydroxyapatites, Journal of Materials Engineering and Performance, 2011, 20(1) 108-113.
[41] Avedesian M.M., Baker H., Editors, ASM specialty handbook: magnesium and magnesium alloys, ASM international; 1999.
[42] Lapovok R., et al, The effect of grain refinement by warm equal channel angular extrusion on room temperature twinning in magnesium alloy ZK60." Journal of materials science, 40, 1699-1708.
[43] Sitdikov O., Kaibyshev R., Dynamic recrystallization in pure magnesium, Materials Transactions, 2001, 42(9) 1928-1937.
[44] Fullman R.L., Fisher J.C., Formation of annealing twins during grain growth, Journal of Applied Physics, 1951, 22(11) 1350-1355.
[45]Bakhsheshi-Rad H.R., Abdul-Kadir M.R., Idris M.H., Farahany S., Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5 Ca–xZn alloys, Corrosion Science, 2012, 64, 184-197.
[46] Shi Z., Liu M., Atrens A., Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corrosion science, 2010, 52(2) 579-588.
[47] He S.Y., Yue S.U., Chen M.F., Liu D.B., Ye X.Y., Microstructure and properties of biodegradable β-TCP reinforced Mg-Zn-Zr composites, Transactions of Nonferrous Metals Society of China, 2011, 21(4) 814-819.
[48] Ye X., Chen M., Yang M., Wei J., Liu D., In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites, Journal of Materials Science: Materials in Medicine, 2010, 21(4) 1321-1328.
[49] Santamaria M., Di Quarto F., Zanna S., Marcus P., Initial surface film on magnesium metal: A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS) Electrochimica Acta, 2007, 53(3) 1314-1324.
[50] Yao H.B., Li Y., Wee A.T., An XPS investigation of the oxidation/corrosion of melt-spun Mg, Applied Surface Science, 2000, 158(1-2) 112-119.
[51] Witte F., Feyerabend F., Maier P., Fischer J., Störmer M., Blawert C., Dietzel W., Hort N., Biodegradable magnesium–hydroxyapatite metal matrix composites, Biomaterials, 2007, 28(13) 2163-2174.