بررسی تاثیر مس در بهسازی ساختاری و اندیس کیفیت کامپوزیت Al-15Mg2Si

نوع مقاله: مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد؛ گروه مهندسی مواد و متالورژی، دانشگاه بین‌المللی امام خمینی (ره) قزوین، ایران

2 دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی (ره) (IKIU)، قزوین، ایران

10.22034/frj.2019.206475.1104

چکیده

کامپوزیت‌های درجای Al-Mg2Si به‌دلیل چگالی کم و خواص استحکامی و سایشی خوب، جایگزین بسیار مناسبی برای قطعات آلومینیمی و چدنی مورد استفاده در صنایع خودروسازی و هوا-فضا هستند. خواص برتر این کامپوزیت‌ها مستلزم بهسازی ساختاری و کنترل ابعاد و مورفولوژی ذرات Mg2Si اولیه شکل گرفته در ساختارشان است. هدف از تحقیق حاضر، بررسی تاثیر افزودن مس (1 تا 5 درصد وزنی) بر ساختار متالورژیکی و اندیس کیفیت کامپوزیت Al-15Mg2Si است. نتایج به دست آمده حاکی از آن است که افزودن مس موجب شکل‌گیری رسوبات بین فلزی غنی از مس، بهسازی مورفولوژی و کاهش ابعاد ذرات Mg2Si می‌شود. بر اساس نتایج آزمون کشش، افزودن مس تا حدود 3 درصد وزنی استحکام کششی کامپوزیت را حدود 34 درصد بهبود می‌بخشد اما افزودن مقادیر بیشتر از این عنصر تاثیر منفی بر استحکام کششی دارد. همچنین افزودن مس تا حدود 1 درصد وزنی موجب بهبود حدودا 7 درصدی درصد ازدیاد طول کامپوزیت می‌شود اما پس از آن تاثیر منفی بر انعطاف‌پذیری دارد. حداکثر اندیس کیفیت در کامپوزیت حاوی 3 درصد وزنی مس مشاهده شد که حدود 8 درصد بیش از اندیس کیفیت کامپوزیت پایه بود. نتایج مطالعات ساختاری، سختی سنجی، آنالیز شیمیایی رسوبات و شکست‌نگاری سطوح شکست نشان می‌دهد که استحکام‌بخشی محلول جامد، تشکیل رسوبات غنی از مس در زمینه و کاهش ابعاد و بهسازی مورفولوژی ذرات بین فلزی Mg2Si از جمله مهمترین عوامل بهبود کیفیت و افزایش کسر حجمی رسوبات سخت غنی از مس و تخلخل‌های ساختاری، از جمله مهمترین عوامل افت خواص کششی و کیفیت کامپوزیت هستند.

کلیدواژه‌ها


[1]       Emamy M., Nemati N., Heidarzadeh A., The influence of Cu rich intermetallic phases on the microstructure, hardness and tensile properties of Al–15%Mg2Si composite, Materials Science and Engineering, A. 2010, 527(12) 2998-3004.
[2]       Lin J., Bai G., Liu Z., Niu L., Li G., Wen C., Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg2Si/Al composite, Materials Chemistry and Physics, 2016, 178, 112-118.
[3]       Nadim A., Taghiabadi R., Razaghian-Noghani M.T., Ghoncheh M.H., Effect of Fe-impurity on tribological properties of Al-15Mg 2 Si composite, Transactions of Nonferrous Metals Society of China, 2018, 28(6) 1084-1093.
[4]       Qin Q., Li W., The Formation and characterization of the primary Mg2Si dendritic phase in hypereutectic Al-Mg2Si alloys, Materials Transactions, 2016, 57(2) 85-90.
[5]       Srinivas V., Singh V., Development of in situ as cast Al–Mg2Si particulate composite: microstructure refinement and modification studies, Transactions of the Indian Institute of Metals, 2012, 65(6) 759-764.
[6]       Fatemi-Jahromi F., Emamy M., An investigation into high temperature tensile behavior of hot-extruded Al–15wt%Mg2Si composite with Cu-P addition, Manufacturing Science and Technology, 2015, 3(4) 160-169. 
[7]       Moussa M.E., Waly M.A., El-Sheikh A.M., Effect of Ca addition on modification of primary Mg2Si, hardness and wear behavior in Mg–Si hypereutectic alloys, Journal of Magnesium and Alloys, 2014, 2(3) 230-238.
[8]       Nasiri N., Emamy M., Malekan A., Norouzi M.H., Microstructure and tensile properties of cast Al–15% Mg2Si composite: Effects of phosphorous addition and heat treatment, Materials Science and Engineering: A, 2012, 556, 446-453.
[9]       Zengin H., Effect of solidification rate on corrosion resistance of cast Al-10 Mg2Si in-situ composite, OHU Journal of Engineering Science, 2019, 8(2) 1143-1152.
[10]    Ghandvar H., Idris M.H., Ahmad N., Effect of hot extrusion on microstructural evolution and tensile properties of Al-15%Mg2Si-xGd in-situ composites, Journal of Alloys and Compounds, 2018, 751: 370-390.
[11]    Zamani R., Mirzadeh H., Emamy M., Magnificent grain refinement of Al-Mg2Si composite by hot rolling, Journal of Ultrafine Grained and Nanostructured Materials, 2018, 51(1) 71-76.
[12]    Emamy M., Vaziri-Yeganeh S.E., Razaghian A., Tavighi K, Microstructures and tensile properties of hot-extruded Al matrix composites containing different amounts of Mg2Si, Materials Science and Engineering: A, 2013, 586, 190-196.
[13]    Jiang W., Xu X., Zhao Y., et al, Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al- Mg2Si in-situ composite, Materials Science and Engineering: A, 2018, 721, 263-273.
[14]    Samadi F., Emamy M., Honarbakhsh Raouf A., Akrami A., Effect of heat treatment on the mocrostructure, hardness, and wear properties of Al-15Mg2Si-3Cu with different contents of Zn, Manufacturing Science and Technology, 2015, 3(4) 189-195.
[15]    Chegini M., Shaeri M., Taghiabadi R., Chegini S., Djavanroodi F., The correlation of microstructure and mechanical properties of in-situ Al-Mg2Si cast composite processed by equal channel angular pressing, Materials, 2019, 12(9) 1553.
[16]    Moharrami A., Razaghian A., Emamy M., Taghiabadi R., Effect of tool pin profile on the microstructure and tribological properties of friction stir processed Al-20wt% Mg2Si composite, Journal of Tribology, 2019, 141(12).
[17]    Nordin N.A., Farahany S., Ourdjini A., Abu Bakar T.A., Hamzah E., Refinement of Mg2Si reinforcement in a commercial Al–20% Mg2Si in-situ composite with bismuth, antimony and strontium, Materials Characterization, 2013, 86, 97-107.
[18]    Wang H., Liu F., Chen L., Zha M., Liu G., Jiang Q., The effect of Sb addition on microstructures and tensile properties of extruded Al–20Mg2Si–4Cu alloy, Materials Science and Engineering: A, 2016, 657, 331-338.
[19]    Ghandvar H., Idris M.H., Ahmad N., Emamy M., Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15% Mg2Si in-situ composite, Materials Characterization, 2018, 135, 57-70.
[20]    Wu X., Zhang G., Wu F., Wang Z., Influence of neodymium addition on microstructure, tensile properties and fracture behavior of cast Al- Mg2Si metal matrix composite, Journal of Rare Earths, 2013, 31(3) 307-312.
[21]    Jiang QC, Wang HY, Wang Y, Ma BX, Wang JG, Modification of Mg2Si in Mg–Si alloys with yttrium, Materials Science and Engineering: A, 2005, 392(1-2) 130-135.
[22]    Zhao Y.G., Qin Q.D., Zhou W., Liang Y.H., Microstructure of the Ce-modified in situ Mg2Si /Al–Si–Cu composite, Journal of Alloys and Compounds, 2005, 389(1-2) L1-L4.
[23]    Wang L., Guo E, Ma B, Modification effect of lanthanum on primary phase Mg2Si in Mg-Si alloys, Journal of Rare Earths, 2008, 26(1) 105-109.
[24]    Emamy M., Emami A.R., Tavighi K, The effect of Cu addition and solution heat treatment on the microstructure, hardness and tensile properties of Al–15%Mg2Si–0.15%Li composite, Materials Science and Engineering: A, 2013, 576, 36–44.
[25]    Yan F., Ji S.X., Fan Z.Y., Effect of Cu on the microstructure and mechanical properties of diecast Al-Mg2Si-Mg based alloy, Materials Science Forum, 2014, 794–796, 172–177.
[26]    Tiryakioğlu M., Staley J.T., Campbell J., Evaluating structural integrity of cast Al–7%Si–Mg alloys via work hardening characteristics, Materials Science and Engineering: A, 2004, 368(1-2) 231-238.
[27]    محمدی م.، تقی‌آبادی ر.، نظری م.، تاثیر عناصر بهساز در بهبود اندیس کیفیت آلیاژ آلومینیم 356A قبل و بعد از عملیات حرارتی 6T، پژوهش‌نامه ریخته گری، 1397، (1)2، 25-11.
[28]    Drouzy M., Jacob S., Richard M., Interpretation of tensile results by means of quality index and probable yield strength, AFS International, Cast Metals Research Journal, 1980, 5, 43-50.
[29]    Vušanović I., Šarler B., Krane M.J.M., Microsegregation during the solidification of an Al–Mg–Si alloy in the presence of back diffusion and macrosegregation, Materials Science and Engineering: A, 2005, 413-414, 217-222.
[30]    Wang H.Y., Zhu J.N., Li J.H., Li C., Zha M., Wang C., Yang Z.Z., Jiang Q.C., Refinement and modification of primary Mg2Si in an Al–20Mg2Si alloy by a combined addition of yttrium and antimony, Crystal Engineering Communication, 2017, 19(42) 6365–6372.
[31]    Matsuda K., Ikeno S., Uetani, Y, Sato, T, Meta-stable phases in an Al-Mg-Si alloy containing copper, Metallurgical and Materials Transactions A, 2001, 32(6) 1293–1299.
[32]    Wang S, Fan C, Crystal structures of Al2Cu revisited: understanding existing phases and exploring other potential phases, Metals 2019, 9 (10) 1037.
[33]    Zhang J., Fan Z., Wang Y., Zhou B., Microstructural Development of Al–15wt.%Mg2Si in situ composite with mischmetal addition, Materials Science and Engineering: A, 2000, 281(1–2) 104–112.
[34]    Chen L., Wang H.Y., Liu K., Wang C., Luo D., Jiang Q.C., Growth of Mg2Si crystals shaped by {100} and {111} facets from Al–Mg–Si melts in the presence of calcium, Crystal Engineering Communication, 2017, 19(22) 3058–3062.
[35]    Taghiabadi R., Fayegh A., Pakbin A., Nazari M., Ghoncheh MH, Quality index and hot tearing susceptibility of Al–7Si–0.35Mg– X Cu alloys, Transactions of Nonferrous Metals Society of China. 2018, 28(7) 1275–1286.
[36]    Prados E.F., Sordi VL, Ferrante M, The effect of Al2Cu precipitates on the microstructural evolution, tensile strength, ductility and work-hardening behaviour of a Al–4wt.% Cu alloy processed by equal-channel angular pressing, Acta Materialia, 2013, 61(1) 115–125.
[37]    Shabestari S.G., Moemeni H., Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg Alloys, Journal of Materials Processing Technology, 2004, 153–154, 193–198.
[38]    Cáceres C., Djurdjevic M., Stockwell T., Sokolowski J., The effect of Cu content on the level of microporosity in Al-Si-Cu-Mg casting alloys, Scripta Materialia, 1999, 40(5) 631–637.
[39]    Edwards G.A., Sigworth G.K., Caceres C.H., StJohn D.H., Barresi J., Microporosity formation in Al−Si−Cu−Mg casting alloys, AFS Transactions, 1997, 105, 809−818.
Heidarzadeh A., Emamy M., Rahimzadeh A., Soufi R., Sohrabi-Baba-Heidary D., Nasibi S., The effect of copper addition on the fluidity and viscosity of an Al-Mg-Si alloy, Journal of Materials Engineering and Performance, 2013, 23(2) 469–476.