اثر زمان و دمای غوطه وری بر مشخصات فصل مشترک آلومینیم خالص و فولاد ساده کربنی

نوع مقاله: مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

2 دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران‏

10.22034/frj.2018.108915.1014

چکیده

برای دستیابی به یک کامپوزیت جفت-فلزی قابل قبول از دو فلز، بررسی مشخصات فصل مشترک آنها ضروری به نظر می‌رسد. در این تحقیق اتصال بین یک نمونه فولاد ساده کربنی و آلومینیم خالص تجاری و نحوه‌ تشکیل و رشد ترکیبات بین‌فلزی در فصل مشترک مورد بررسی قرار گرفت.  میله‌های فولادی، در زمان‌های مختلف 5، 10، 15 و 20 دقیقه در دماهای 680، 720، 760 و 800  درجۀ سانتیگراد، درون مذاب آلومینیم خالص نگه‌داشته شده و سپس از مذاب بیرون آورده و در هوا خنک شدند. پس از نمونه‌گیری از مقاطع، ریزساختار فصل مشترک تشکیل شده بین زیرلایه‌ی فولادی و آلومینیم با میکروسکوپ نوری (OM)، میکروسکوپ الکترونی (SEM)، اسپکتروسکوپی اشعه ایکس (EDS) و ریزسختی سنجی ویکرز مورد بررسی قرار گرفت. نتایج نشان داد که لایه‌ی بین‌فلزی  از دوترکیب بین‌فلزی  FeAl3 و Fe2Al5 تشکیل شده است. با افزایش دما و زمان غوطه‌وری نوع ترکیبات تشکیل شده بدون تغییر بوده و فقط ضخامت لایه‌ی بین‌فلزی  تغییر کرده است. برای بررسی سختی فازهای تشکیل شده، تست ریزسختی سنجی ویکرز در راستای عمود بر فصل مشترک نشان داد که سختی فصل مشترک واکنشی ایجاد شده به دلیل وجود ترکیبات بین­فلزی سخت و ترد، بالاتر از سختی فلزات پایه فولاد و آلومینیم است. سینیتیک تشکیل ترکیبات مورد بحث قرار گرفته است.

کلیدواژه‌ها


[1] ASM Metals Handbook Vol.5, Surface Engineering, ASM International, 1992.

[2]  Aguado E., Baquedano A., Uribe U., Fernandez-Calvo A. L., Niklas A., Comparative study of different interfaces of steel inserts in aluminium castings, Materials Science Forum, 2013, 765, 711-715.

[3]  Rana-Rajesh-Purohit R.S., Das S., Review of recent studies in Al matrix composites, International Journal of Scientific and Engineering Research, 2012, 3(6) 2229-5518.

[4]  Manikanadan G., Uthayakumar M., Aravindan S., Machining and simulation studies of bimetallic pistons, International Journal of Advanced Manufacturing Technology, 2013, 66, 711-720.

[5]  Akbarifar M., Divandari M., Interface characterization of Al/Cast iron composite, Journal of Science and Technology of Composites, 2016, 3(3) 261-268 (In Persian).

[6]  Hiteh E., Divandari M., Gholami, M., Interface characterization of aluminum-copper bimetal composite produced via centrifugal casting, Journal of Science and Technology of Composites, 2017, 3(4) 343-350 (In Persian)

[7]  Hwang S.H., Song J.-H., Kim Y.S., Effects of carbon content of carbon steel on its dissolution into a molten aluminum alloy, Materials Science and Engineering A, 2005, 390, 437–443.

[8]  Akdeniz M.V., Mekhrabov A.O., The effect of substitutional impurities on the evolution of Fe-Al diffusion layer, Acta Material. 1998, 46, 1185-1192.

[9]  Akdeniz M V, Mekhrabov A 0, Yilmaz T, The role of Si addition on the interfacial interaction in Fe-Al diffusion layer, Scripta MetaUurgica et Materialia, 1994, 3, 1723-1728.

[10] Tanaka Y., Kajihara M., Kinetics of isothermal reactive diffusion between solid Fe and liquid Al, Journal of Material Science, 2010, 45, 5676–5684.

[11] Cheng W.J., Wang Ch.J., Growth of intermetallic layer in the aluminide mild steel during hot-dipping, Surface & Coatings Technology, 2009, 204, 824–828.

[12] Bouche K., Barbier F., Coulet A., Intermetallic compound layer growth between solid iron and molten aluminium, Materials Science and Engineering A, 1998, 249, 167–175.

[13] Deqing W, Ziyuan S, Longjiang Z, A liquid aluminum corrosion resistance surface on steel substrate, Applied Surface Science, 2003, 214, 304-311.

[14] Kobayashi S., Yakou T., Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment, Material Science and Engineering, 2002, 338, 44–53.

[15] Yajiang L., Juan W., Yonglan Z., Holly X., Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel, Bulletin of Materials Science, 2002, 25(7) 635–639.

[16] Abro M. A., Lee D.B., Effect of Al hot-dipping on high-temperature corrosion of carbon steel in N2/0.1% H2S gas, Metals, 2016, 6(2) 38.

[17] Joshi V., Srivastava A., Shivpuri R., Intermetallic formation and its relation to interface mass loss and tribology in die casting dies, Wear, 2004, 256, 1232–1235.

[18] Tanaka Y, Kajihara M, Morphology of compounds formed by isothermal reactive diffusion between solid Fe and liquid Al, Materials Transactions, 2009, 50, 2212-2220.

[19] Shahverdi H.R., Ghomashchi M.R., Shabestari S., Hejazi J., Microstructural analysis of interfacial reaction between molten aluminium and solid iron, Journal of Materials Processing Technology, 2002, 124, 345-352.

[20] Bouayad A., Gerometta Ch., Belkebir A., Ambari A., Kinetic interactions between solid iron and molten aluminium, Materials Science and Engineering A, 2003, 363, 53–61.

[21] Dybkov V. I., Phase formation and diffusion in binary systems: Real facts and misleading views, Materials Science and Technology Conference and Exhibition, 2007, 3, 1797-1808.

[22] Dybkov V.I., The growth kinetics of intermetallic layers at the interface of a solid metal and a liquid solder, JOM, 2009, 61, 76-79.

[23] Tang N, Li Y P, Kurosu S, Koizumi Y, Matsumoto H, Chiba A, Interfacial reactions of solid Co and solid Fe with liquid Al, Corrosion Science, 2012, 60, 32–37.

[24] Liru F., Lin L., Analysis of coating microstructure of hot-dip aluminum of deformed low-carbon steel containing rare earth, Journal of Rare Earths, 2005, 23, 460-463.

[25] Nazari K.A., Shabestari S., Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel, Journal of Alloys and Compounds, 2009, 478, 523–530.

[26] Nishimoto S, Kobayashi S, Takada N, Matsuo T, Takeyama M, “Collected Abstracts of 2008 Autumn Meeting of the Japan Inst. Metals” , 2008,  82-87.

[27] Maitra T, Gupta S.P., Intermetallic compound formation in Fe–Al–Si ternary system: part II, Materials Characteristics, 2013, 49, 293–311.

[28] Takata N., Nishimoto M., Kobayashi S., Takeyama M., Crystallography of Fe2Al5 phase at the interface between solid Fe and liquid Al, Intermetallics, 2015, 67, 1-11.

[29] Deqing W., Phase evolution of an aluminized steel by oxidation treatment, Applied Surface Science, 2008, 254, 3026–3032.

[30] Springer H., Kostka A., Payton E.J., Raabe D., Kaysser-Pyzalla A., Eggeler G., On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys, Acta Materialia, 2011, 59,  1586–1600.

[31] Sasaki T., Yakou T., Mochiduki K., Ichinose K., Effect of carbon contents in steel on alloy layer growth during hot-dip aluminum coating, ISIJ International, 2005, 45, 1887-1892.