اثر کلسیم بر مقاومت به اکسیداسیون و سیالیت آلیاژ منیزیم ‏AZ91‎

نوع مقاله: مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران.

2 دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران.

3 استادیار، گروه آموزشی مهندسی مواد و متالورژی،دانشگاه اراک.

10.22034/frj.2019.155605.1065

چکیده

 آلیاژ منیزیم AZ91، در حالت مذاب در اتمسفر حفاظت نشده به سرعت اکسید می‌شود که کیفیت و تمیزی آلیاژ را تحت تاثیر قرار می‌دهد. علاوه بر این حضور لایه اکسیدی روی مذاب از سیالیت آن می‌کاهد که به همین دلیل استفاده از آلیاژهای منیزیم در ریخته‌گری مقاطع نازک با محدودیت جدی روبه‌رو است. در این مقاله، اثر افزودن کلسیم بر افزایش مقاومت به اکسیداسیون و سیالیت مذاب آلیاژAZ91  مورد بررسی قرار گرفته است. به این منظور، نمونه‌هایی از آلیاژ AZ91 تهیه و مقادیر مختلف کلسیم به آن اضافه شد. سپس نمونه‌ها در دمای 700 درجه سانتی‌گراد در مدت زمان‌های مختلف در اتمسفر کوره بدون گاز محافظ نگهداری شدند. بررسی‌های سطح نمونه، GI-XRD از سطح و آزمون اکسیداسیون نشان می‌دهند که در سطح، فیلم اکسیدی چگال و فشرده متشکل از MgO و CaO ایجاد می‌شود که عمل حفاظت از مذاب را انجام می‌دهد و از نفوذ اکسیژن به مذاب جلوگیری می‌کند. در نتیجه مذاب در دمای 700درجه سانتی‌گراد بدون حضور گاز محافظ پایدار باقی می‌ماند. مزیت استفاده از کلسیم در آلیاژهای منیزیم، حذف گازهای گران‌قیمت گل‌خانه‌ای همچون SF6 است. برای بررسی میزان پیشروی مذاب آلیاژ AZ91 در حضور کلسیم، آزمایش ارزیابی سیالیت با استفاده از قالب مارپیچ (اسپیرال) انجام شد. نتایج آزمایش نشان داد که با افزودن کلسیم (در مقادیر 5/0-5/1 و 2 درصد وزنی) طول سیالیت از حدود 100 میلی‌متر به 340 میلی‌متر افزایش پیدا کرد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Calcium on Oxidation Resistance and Fluidity of Magnesium ‎Alloy AZ91‎

نویسندگان [English]

  • Shima Paridari 1
  • Hassan Saghafian Larijani 2
  • Ghasem Eisaabadi 3
1 M.Sc. Student, School of Metallurgy and Materials Engineering, Iran University of Science and Technology. ‎
2 Associate Professor, School of Metallurgy and Materials Engineering, Iran University of Science and Technology. ‎
3 Assistant Professor, Department of Material and Metallurgical Engineering, Arak University.
چکیده [English]

Mg alloy is easily oxidized during melting in the unprotected atmosphere. This affects on the quality and cleanness of the alloy. In addition, the presence of oxide layer on the surface of melt decreases its fluidity so use of magnesium alloys in thin-film casting is faced with Serious limitation. In this paper, effect of adding calcium on the oxidation resistance and fluidity of AZ91 alloy melt have been investigated. For this purpose, samples of AZ91 alloy were prepared with different amounts of calcium. Afterward samples were stored at 700 ° C for different periods of time in furnace atmosphere .Microstructural, GI-XRD and surface oxidation tests showed that, a dense and compact oxide film composed of CaO is formed on surface, which performs melt protection and prevents penetrating of oxygen into the melt .As a result, the melt stables at a temperature of 700 ° C without presence of a protective gas .The most important advantage of use of calcium in magnesium alloys is not applying protective gases such as SF6. To investigate the fluidity of AZ91 alloy in the presence of calcium, the fluidity test was performed by using spiral pattern. The test results showed that by adding calcium, length of fluidity increased from about 100 mm to 340 mm.

کلیدواژه‌ها [English]

  • mg alloys
  • oxidation
  • Calcium
  • SF6
  • Fluidity

[1] Dobrzański L., Tański T., Domagała J., Čížek L., Mechanical properties of magnesium casting alloys, Materials and Manufacturing Engineering, 2007, 24(2) 99-102.

[2] Mordike B., Ebert T., Magnesium- properties-applications-potential, Materials Science and Engineering, 2001, 302, 37-45.

[3] Yang Z., Li J., Zhang J., Lorimer G., Robson J., Review on research and development of magnesium alloys, Acta Metallurgica Sinica, 2008, 21(5) 313-328.

[4]حجازی ج.، ریخته‌گری فلزات غیر آهنی، جامعه ریخته‌گران ایران، 1360.

[5] سعادتی‌فر ح.، بررسی اثر سرعت بحرانی در چقرمگی شکست آلیاژ منیزیم AZ91، پروژه کارشناسی ارشد، دانشکده مواد و متالورژی دانشگاه علم و صنعت ایران، 1389.

[6] بوترابی س.م.ع.، بالی، ض.، ریخته‌گری پیشرفته، جلد 1، دانشگاه علم و صنعت ایران، 1376.

[7] Lee D.B., Hong L.S., Kim Y.J., Effect of Ca and CaO on the high temperature oxidation of AZ91D Mg alloys, Materials Transactions, 2008, 49(5), 1084-1088.

[8] Kim S., Seo J.H., Magnesium-based alloy for high temperature and manufacturing method thereof, US Patent 8, 808, 423, B2, 2014.

[9] Kim S., Seo J.H., Magnesium-based alloy for room temperature and manufacturing method thereof, US Patent 9, 085, 815, B2, 2015

]10[ میرک ع.ر.، دیواندری م.، بوترابی س.م.ع.، مطالعه مورفولوژی فیلم اکسید تشکیل شده در شرایط ریخته‌گری آلیاژهای منیزیم (AZ91)، نشریه دانشکده فنی، ص 1030-1023، 1389.

[11] Ha S.H., Lee J.K., Jo H.H., Jung S.B., Kim S., Behavior of CaO and calcium in pure magnesium, Rare Metals, 2006, 25, 150-154.

[12] Holtzer M., Bobrowski A., Magnesium melt protection by covering gas, Foundry Engineering, 2008, 8(1) 131-136.

[13] رفیعی م.، بررسی پارامترهای ریخته‌گری (سیالیت، تغذیه‌رسانی و ترک گرم) آلیاژ AZ91 منیزیم، پروژه کارشناسی ارشد، دانشکده مواد و متالورژی، دانشگاه علم و صنعت ایران، 1387.

[14] Hwan J., Effect of CaO addition on microstructure and damping capacity of AM50 magnesium alloy, Materials Transactions, 2013, 54, 411-409.

[15] Chen Y., Effects of the addition of Ca and Sb on the microstructure and mechanical properties of AZ91 magnesium, Materials Science & Engineering, 2013, 587, 262-267.

[16] بوترابی س.م.ع.، کزازی غ.ر.، مصلح ب.، نفیسی ش.، نگرشی نوین بر طراحی سیستم‌های راه‌گاهی، دانشگاه علم و صنعت ایران، 1376.

[17] Choi B.H., You B.S., Park I.M., Characterization of protective oxide layers formed on molten AZ91 alloy containing Ca and Be, Metals and Materials International, 2006, 12(1) 63-67.

[18] T.W. Lee, H.G. Kim, M.G. So, J.K. Lee, S. Kim, Microstructural evaluation of oxide layers in CaO-added Mg alloys, Alloys and Compounds, 2015, 635, 5-10.

[19] Li P., Tang B., Kandalova E., Microstructure and properties of AZ91D alloy with Ca additions, Materials Letters, 2005, 59(6) 671-675.

[20] Kim S., Seo J.H., Magnesium-based alloy with superior fluidity and hot-tearing resistance and manufacturing method thereof, US Patent 8, 734, 564, B2, 2014.