بررسی اثرات دمای ذوب بر رفتار انجمادی کامپوزیت درجا ‏Al-Mg2Si‏ به روش آنالیز حرارتی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد ومتالورژی ، دانشگاه علم و صنعت ایران

2 استاد، دانشکده مهندسی مواد و متالورزی - دانشگاه علم و صنعت ایران

10.22034/frj.2019.208458.1107

چکیده

امروزه کامپوزیت‌های درجا Al-Mg2Si به دلیل چگالی کم، استحکام ویژه زیاد، مقاومت به سایش و پایداری حرارتی خوب، مورد توجه صنایعی ازجمله خودروسازی و هوافضا قرارگرفته‌اند. در این تحقیق، به بررسی اثرات مقدار دمای ذوب بر مشخصه‌های انجمادی کامپوزیت درجا Al-20%Mg2Si، از طریق آنالیز حرارتی منحنی‌های سرد شدن پرداخته شده است. به این منظور، منحنی‌های آنالیز حرارتی این کامپوزیت در سه دمای ذوب 750، 800 و 850 درجه سانتی‌گراد رسم شده و تأثیر دمای ذوب بر مشخصه‌های انجمادی این کامپوزیت بررسی شده است. نتایج نشان می‌دهد که تغییرات دمای ذوب بر مشخصه­های جوانه‌زنی و رشد فاز مقاوم‌ساز Mg2Si و مشخصه‌های واکنش یوتکتیک تأثیرگذار است. به‌گونه‌ای که افزایش دمای ذوب از °C750 به °C850، موجب افزایش دمای جوانه­زنی فاز مقاوم‌ساز Mg2Si، از °C 6/687 به °C 2/690، افزایش دامنه انجماد به میزان °C 4/22 و کاهش دمای رشد واکنش یوتکتیک دوتایی به میزان °C 7/3 می‌شود. با افزایش دمای ذوب، اندازه فاز مقاوم‌ساز Mg2Si، 16درصد کاهش یافته و توزیع آن‌ها در ساختار کامپوزیت یکنواخت‌تر می‌شود که این امر می‌تواند منجر به بهبود خواص مکانیکی شود.

کلیدواژه‌ها


[1]  Li C., Wu Y.Y., Li H., Liu X.F., Morphological evolution and growth mechanism of primary Mg2Si phase in Al-Mg2Si alloys, Acta Materialia, 59 (2011) 1058–1067.
[2]  Jing Q., Deng G., Liang Y., Modification microstructures in in-situ Mg2Si reinforced Al-Si alloy composites, Advanced Materials Research, 2010, 139-141, 718–722.
[3]  Khorshidi R., Honarbakhsh Raouf A., Emamy M., Campbell J., The study of Li effect on the microstructure and tensile properties of cast Al-Mg2Si metal matrix composite, Journal of Alloys and Compounds, 2011, 509, 9026–9033.
[4]  Nadim A., Taghiabadi R., Razaghian A., Noghani M.T., Ghonvheh M.H., Effect of Fe-impurity on tribological properties of Al-15Mg2Si composite, Trans. Nonferrous Met. Soc. China (English Ed., 2018, 28, 1084–1093.
[5]  Saghafian H., Shabestari S.G., Ghoncheh M.H., Sahihi F., Wear Behavior of thixoformed Al-25wt%Mg2Si composites produced by Slope Casting Method, Tribology Transactions, 2015, 58, 288–299.
[6]  Tong X., Zhang D., Wang K., Lin J., Liu Y., Shi Z., Li Y., Lin J., Wen C., Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites, Materials Science and Engineering: A, 2018, 733, 9–15.
[7]  Khorshidi R., Honarbakhsh-Raouf A., Mahmudi R., Effect of minor Gd addition on the microstructure and creep behavior of a cast Al–15Mg2Si in situ composite, Materials Science and Engineering: A, 2018, 718, 9–18.
[8]  Shabestari S.G., Malekan M., Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis, Journal of Alloys and Compounds, 2010, 492, 134–142.
[9]  Farahany S., Ourdjini A., Idrsi M.H., Shabestari S.G., Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy: Effect of silicon modifier/refiner and solidification conditions on the nucleation and growth of dendrites, Journal of Thermal Analysis and Calorimetry, 2013, 114(2) 705-717.
[10]   Backerud L., Chai G., Tamminen J., Solidification Characteristics of aluminum alloys, Foundry Alloy, 1990, 2, 266.
[11]  صحیحی ف.، بررسی خواص مکانیکی (سختی و سایش) کامپوزیت‌های Al-Mg2Si تولید شده به روش نیمه‌جامد، پایان‌نامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، 1389.
[12]  یاوری ف.، بررسی تأثیر مقدار آلومینیم و سرعت سرد شدن بر رفتار انجمادی آلیاژهای منیزیم Mg-Al-Zn از طریق آنالیز حرارتی، پایان‌نامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، 1395.
[13]   Zhang J., Fan Z., Wang Y.Q., Zhou B.L., Equilibrium pseudobinary Al-Mg2Si phase diagram, Materials Science and Technology, 2001, 17, 494–496.
[14]   Shabestari S.G., Saghafian H., Sahihi F., Ghoncheh M.H., Investigation on microstructure of Al–25wt-%Mg2Si composite produced by slope casting and semi-solid forming, Int. J. Cast Met. Res., 2015, 28 , 158–166.
[15]   Li C., Wu Y., Li H., Liu X., Microstructural formation in hypereutectic Al-Mg2Si with extra Si, Journal of Alloys and Compounds, 2009, 477, 212–216.
[16]   Zhang J., Fan Z., Wang Y.Q., Zhou B.L., Microstructural evolution of the in situ Al-15wt%Mg2Si composite with extra Si contents, Scripta Materialia, 2000, 42, 1101–1106.
[17]   Yang W., Yang X., Ji S., Melt superheating on the microstructure and mechanical properties of diecast Al-Mg-Si-Mn alloy, Metals and Materials International, 2015, 21, 382–390.
[18]   Liu Z., Xie M., Liu X.M., Microstructure and properties of in situ Al-Si-Mg2Si composite prepared by melt superheating, Applied Mechanics and Materials, 2011, 750–754.
[19]   Gao L., Liang S.M., Chen R.S., Han E.H., Correlation of recalescence with grain Refinement of Magnesium Alloys, Transactions of Nonferrous Metals Society of China (English Ed.), 2008, 18.
[20]   Malekan M., Shabestari S.G., Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys, Journal of Thermal Analysis and Calorimetry, 103 (2011) 453–458.
[21] Du J., Shi Y.T., Li W.F., Assessment of solidification characteristics of carbon-inoculated Mg-3%Al melt by thermal analysis, Transactions of Nonferrous Metals Society of China (English Ed.), (English Ed.), 2018, 28, 812–818.
[22]   Djurdjevic M., Jiang H., Sokolowski J., On-line prediction of aluminum-silicon eutectic modification level using thermal analysis, Materials Characterization, 2001, 46, 31–38.
[23]   Shabestari S.G., Ghodrat S., Assessment of modification and formation of intermetallic compounds in aluminum alloy using thermal analysis, Materials Science and Engineering: A, 2007, 467, 150–158.
[24]   Farahany S., Ourdjini A., Idrsi M.H., Shabestari S.G., Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al-Si-Cu alloy (ADC12) by in situ thermal analysis, Thermochimica Acta, 2013, 559, 59–68.
[25]   Tebib M., Samuel A.M., Ajersch F., Chen X.G., Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy, Materials Characterization, 2014, 89, 112–123.
[26]   Saffari S., Akhlaghi F., Influence of melt superheating on microstructure evolution in Al-Mg2Si composites fabricated by gravity casting and vibrating cooling slope methods, Conference: Proceedings of Iran International Aluminum Conference (IIAC2014) At: Tehran, I.R. Iran, 2014.
[27]   Qin Q.D., Zhao Y.G., Liang Y.H., Zhou W., Effects of melt superheating treatment on microstructure of Mg 2Si/Al-Si-Cu composite, Journal of Alloys and Compounds, 2005, 399, 106–109.
[28]   Zha M., Wang H.Y., Liu B., Zhao B., Liang M.L., Li D., Jiang Q.C., Influence of melt superheating on microstructures of Mg-35Si-1Al alloys, Transactions of Nonferrous Metals Society of China (English Ed.), 2008, 18.