استفاده از آنالیز حرارتی و کوئنچ منقطع به منظور بررسی اثر متقابل بیسموت و استرنسیم بر ‏مشخصه‌های تخلخل

نوع مقاله: مقاله کامل علمی پژوهشی

نویسنده

استادیار، گروه‎ ‎مهندسی شیمی و مواد، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، قزوین، ایران

10.22034/frj.2018.119943.1028

چکیده

 در این تحقیق با استفاده از آنالیز‌حرارتی منحنیِ سرد‌شدن و نیز کوئنچ منقطع، تاثیر متقابل بیسموت و استرنسیم بر روی مشخصه‌های تخلخل در آلیاژ مرسوم مورد استفاده در صنعت (Al-7Si-0.4Mg) مورد بررسی قرار گرفت. بر اساس منحنی‌ سرد‌شدنِ بدست آمده و رسم منحنی‌های مشتق اول و مشتق دوم آن، فرآیند انجماد آلیاژ مورد بررسی قرار گرفت. با محاسبه منحنی کسر‌جامد، دماهایِ متناظر با تشکیل 20، 45 و 80 درصد کسر جامد برای آلیاژهای حاوی نسبت‌های مختلف Sr/Bi یعنی 1/0، 34/0 و 46/0 به طور دقیق تعیین شد. سپس آلیاژها در مقادیر یکسان کسرِجامد به سرعت در دماهای مشخص‌شده کوئنچ شدند. مشخصه‌های تخلخل شامل اندازه، مساحت و چگالی‌ با استفاده از میکروسکوپ نوری مجهز به نرم‌افزار آنالیزگر تصویر مورد اندازه‌گیری قرار گرفتند. نتایج نشان‌داد که اندازه، مساحت و چگالی تخلخل‌ها متاثر از نسبت Sr/Bi و درصد کسرِ جامد است. با افزایش نسبت Sr/Bi از 1/0 به 46/0، مساحت و اندازه تخلخل‌ها به ترتیب به میزان 75  و 141 درصد افزایش ‌یافت. کسرِ ‌جامدِ بحرانی جوانه‌زنی تخلخل‌ها و کسرِ‌جامدِ بحرانی رشد تخلخل‌ها در حضور هم‌زمان بیسموت و استرنسیم در آلیاژهای فوق به ترتیب 70 و 80 درصد تعیین شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Thermal Analysis and Interrupted Quenching Technique to Examine ‎Interactive Effect of Bi-Sr on Porosity Formation Characteristics in Al-7Si-0.4Mg Alloy

نویسنده [English]

  • Saeed Farahany
Assistant Professor, Department of Chemical and Materials Engineering, Buein Zahra ‎Technical University, 3
چکیده [English]

In this research, cooling curve thermal analysis and interrupted quenching technique were employed to examine interactive effect of Sr-Bi on porosity characteristics of the Al-7Si-0.4Mg alloy commonly used in industry. Based on obtained cooling curve profile and plotting the first and second derivative curves, solidification process of the alloy was studied. Solid fraction curves were calculated and corresponding exact temperatures for precipitation of 20, 45 and 80% solid for alloys with different Sr/Bi ratios, namely 0.1, 0.34 and 0.46 were determined. Subsequently, alloys were quenched rapidly at determined temperatures in the same solid fraction. Porosity characteristics consist of size, area and density were measured using an optical microscope equipped with image analyzer software. Results show that the size, area and density of porosity were affected by Sr/Bi ratio and solid fraction percentage. Area percentage and size of porosity increased by 75% and 141% respectively with increase of Sr/Bi ratio from 0.1 to 0.46. Critical solid fraction for the nucleation and growth of porosity in the alloys were determined at 70% and 80%respectively while Sr and Bi co-existed.

کلیدواژه‌ها [English]

  • Aluminium
  • Thermal analysis
  • porosity
  • Bismuth
  • Strontium

 [1] دماوندی ا.، نوروزی س.، ربیعی س.م.، بهبود ریزساختار و خواص مکانیکی آلیاژ آلومینیم A653 به روش کامپوکستینگ، مهندسی مکانیک جامدات، 1393، 14(1) 63-73.

[2] رنجبرپور ح.، نوروزی س.، حسینی‌پور س.ج.، تاثیر دمای ذوب‌ریزی و گرمایش مجدد بر ریزساختار و خواص سایشیA390 در ریخته‌گری روی سطح شیب‌دار، پژوهش‌نامه ریخته‌گری. 1396، 1(1) 37-46.

[3] Dinnis C.M., Dahle A.K., Taylor J.A., Otte M.O., The influence of strontium on porosity formation in Al-Si alloys, Metallurgical and Materials Transaction A, 2004, 35(11) 3531-3541.

[4] Li Y.M., Li R.D., Effect of the casting process variables on microporosity and mechanical properties in an investment cast aluminium alloy, Science and Technology of Advanced Materials, 2001, 2(1) 277-280.

[5] Anson J.P., Gruzleski J.E., Effect of hydrogen content on relative shrinkage and gas microporosity in Al-7% Si casting, AFS Transactions, 1999, 107(1) 135-142.

[6] Anson J.P., Stucky M., Gruzleski J.E., Effect of strontium modification on the nucleation and growth of microporosity during the solidification of Al-7%Si foundry alloy, AFS Transactions, 2000, 108(1) 419-426.

[7] Das S.K., Green J.A.S., Kaufman J.G., Emadi D., Mahfoud M., Aluminum recycling-An integrated, industrywide approach, JOM, 2010, 62(2) 23-26.

[8] Samuel E., Golbahar B., Samuel A.M., Doty H.W., Valtierra S., Samuel F.H., Effect of grain refiner on the tensile and impact properties of Al-Si-Mg cast alloys, Materials Design, 2014, 56(5) 468-479.

[9] Lu L., Dahle A.K., Effects of combined additions of Sr and AlTiB grain refiners in hypoeutectic Al–Si foundry alloys, Materials Science and Engineering A, 2006, 435-436(1) 288-296.

[10] Tang P., Li W., Zhao Y., Wang K., Li W., Zhan F., Influence of strontium and lanthanum simultaneous addition on microstructure and mechanical properties of the secondary Al-Si-Cu-Fe alloy, Journal of Rare Earths, 2017, 35(5) 485-493.

[11] Farahany S., Idris M.H., Ourdjini A., Effect of bismuth and strontium interaction on the microstructure development, mechanical properties and fractography of a secondary Al-Si-Cu-Fe-Zn alloy, Materials Science and Engineering A, 2015, 621(1) 28-38.

[12] Farahany S., Ourdjini A., Hekmat-Ardakan A., Combined effect of strontium modifier and antimony refiner on texture and growth mode of eutectic phase in an Al-11Si-2Cu-0.8Zn-0.6Fe cast alloy, Philosophical Magazine Letters, 2015, 95(12) 587-593.

[13] Emadi D., Whiting L. V., Nafisi S., Ghomashchi R., Applications of thermal analysis in quality control of solidification processes, Journal of Thermal Analysis and Calorimetry. 2005, 81(1) 235-242.

[14] Malekan M., Shabestari S.G., Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys, Journal of Thermal Analysis and Calorimetry, 2011, 103(2) 453-458.

[15] Farahany S., Ourdjini A., Idris M.H., Shabestari S.G., Computer-aided cooling curve thermal analysis of near eutectic Al--Si--Cu--Fe alloy, Journal of Thermal Analysis and Calorimetry, 2013, 114(2) 705-717.

[16] Djurdjevic M., Jiang H., Sokolowski J., On-line prediction of aluminum–silicon eutectic modification level using thermal analysis, Materials Characterization, 2001, 46(1) 31-38.

[17] Hegde S., Prabhu K.N., Modification of eutectic silicon in Al-Si alloys, Journal of Materials Science, 2008, 43(9) 3009-3027.

[18] Malekan M., Shabestari S.G., Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy, Metallurgical and Materials Transaction A, 2009, 40(13) 3196.

[19] Emadi D., Gruzleski J.E., Toguri J.M., The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation, Metallurgical and Materials Transaction B, 1993, 24(6) 1055-1063.

[20] Shahani H., Effect of hydrogen on the shrinkage porosity of aluminium copper and aluminium silicon alloys, Scandinavian Journal of Metallurgy, 1985, 14(1) 306-312.

[21] Anson J.P., Drew R.A.L., Gruzleski J.E., The surface tension of molten aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres, Metallurgical and Materials Transaction B, 1999,  30(6) 1027-1032.

[22] Liu L., Samuel A.M., Samuel F.H., Doty H.W., Valtierra S., Influence of oxides on porosity formation in Sr-treated Al-Si casting alloys, Journal of materials science, 2003, 38(6) 1255-1267.

[23] Fuoco R., Goldenstein H., Gruzleski J.E., Evaluation of effect of modification-induced eutectic undercooling on microporosity formation in 356 Al alloy, Transactions of the American Foundrymen's Society. 1994, 102(1) 297-306.

[24] Samuel A.M., Samuel F.H., Porosity Factor in Quality Aluminium Castings, AFS Transactions, 1999, 100(1) 657-666.

[25] Argo D., Gruzleski J.E., Porosity in modified aluminum alloy castings, AFS Transactions, 1988, 96(1) 65-74.

[26] Fang Q.T., Anyalbechi P. H., Granger D. A., Measurement of hydrogen porosity in unidirectionally solidified aluminium alloys, Light Metals,(edited by L. G. Boxall), The Minerals, Metals and Materials Society 1988, 477-486.

[27] Knuutinen A., Nogita K., McDonald S.D., Dahle A.K., Porosity formation in aluminium alloy A356 modified with Ba, Ca, Y and Yb, Journal of Light Metals, 2001, 1(4) 241-249.