بررسی تاثیر ترکیب شیمیایی و سیکل عملیات حرارتی بر خواص مغناطیسی و ریزساختار ‏ آهنرباهای ریختگی ‏Fe-Cr-Co

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، گروه مهندسی مواد، دانشکده مهندسی مکانیک، دانشگاه تبریز

2 استاد تمام، گروه مهندسی مواد، دانشکده مکانیک، دانشگاه تبریز ، تبریز، ایران

10.22034/frj.2020.222948.1115

چکیده

در پژوهش حاضر آلیاژهای با ترکیب اسمی Fe- 28Cr-15Co-1Si (A) و Fe- 32Cr-23Co-1Si (B) به روش ریخته‌گری تولید و به‌منظور کسب خواص مغناطیسی و تولید آهنرباهای دائم تحت عملیات حرارتی قرار گرفتند. نتایج بررسی‌ها نشان داد که خواص مغناطیسی آلیاژهای مورد بررسی در شرایط ریختگی و بعد از آنیل انحلالی بسیار پایین است اما بعد از اعمال عملیات حرارتی گرمامغناطیسی(TMT)  خواص مغناطیسی به مقدار قابل‌توجهی افزایش می‌یابد. وجود پیک جانبی در کنار پیک اصلی (110) بعد از عملیات TMT در الگوی تفرق اشعه ایکس (XRD) در تمامی آلیاژها وقوع استحاله تجزیه اسپینودال را در این مرحله اثبات می‌کند. در حین عملیات پیرسازی دومرحله‌ای که در دماهای پایین‌تر از دمای عملیات TMT انجام می‌شود، ترکیب شیمیایی دو فاز اسپینودال 1α و 2α تغییر و منجر به افزایش اختلاف 1J و 2J شده و در نتیجه نیروی مغناطیس‌زدایی افزایش می‌یابد. خواص مغناطیسی کسب شده در آلیاژ A بعد از عملیات پیرسازی مرحله‌ای برابر T 63/0 Br = ، kAm-1 83/10 Hc =  و kJm-3 67/6 (BH)max =و  بالاتر از آلیاژ B است. بررسی‌های ریزساختاری نشان داد که در آلیاژ B با درصد کروم و کبالت بالاتر فاز غیرمغناطیسی سیگما تشکیل می‌شود که منجر به افت خواص مغناطیسی می‌شود.

کلیدواژه‌ها

موضوعات


[1] Tao S., Ahmad Z., Zhang P., Zheng X., Wang F., Xu X., Enhancement of magnetic and microstructural properties in Fe-Cr-Co-Mo-V-Zr-Y permanent magnetic alloy, Journal of Magnetism and Magnetic Materials, 2019, 484, 88–94.
[2] Tao S., Ahmad Z., Zhang P., Zheng X., Zhang S., Effects of Sm on structural, textural and magnetic properties of Fe–28Cr–20Co–3Mo–2V–2Ti hard magnetic alloy, Journal of Alloys and Compounds, 2019, 816, 1-7.
[3] Ushakova O.A., Dinislamova E.H., Gorshenkov M.V., D.G. Zhukov, Structure and magnetic properties of Fe–Cr–Co nanocrystalline alloys for permanent magnets, Journal of Alloys and Compounds, 2014, 586, S291–S293.
[4] Jin S., Chin G.Y., Fe-Cr-Co magnets (Invited), IEEE Transactions on Magnetics, 1987, 23(5) 3187-3192.
[5] Akbar S., Ahmad Z., Awan M.S., Sarwar M.N., Farooque M., Single step heat treatment cycle for development of isotropic Fe-Cr-Co magnets, Key Engineering Materials, 2012, 510, 315-320.
[6] X.Y. Sun, C.Y. Xu, L. Zhen, L.X. Lv, L. Yang, Evolution of modulated structure in Fe–Cr–Co alloy during isothermal ageing with different external magnetic field conditions, Journal of Magnetism and Magnetic Materials, 2007, 312, 342–346.
[7] Ahmad Z., Ul Haq A., Husaina S.W., Abbas T., Magnetic properties of isotropic Fe–28Cr–15Co–3.5Mo permanent magnets with additives, Physica B., 2002, 321, 54–59.
[8] Kubota T., Wakui G., Itagaki M., Hysteresis motor using magnetically anisotropic Fe–Cr–Co magnet, IEEE Transactions on Magnetics, 1998, 34(6) 3888-3896.
[9] Jin S., Chin G.Y., Wonsiewicz B.C., A low cobalt ternary Cr-Co-Fe alloy for telephone receiver magnet use, IEEE Transactions on Magnetics, 1980, 16(1) 139-146.
[10] Ahmad Z., Haq A., Yan M., Iqbal Z., Evolution of phase, texture, microstructure and magnetic properties of Fe–Cr–Co–Mo–Ti permanent magnets, Journal of Magnetism and Magnetic Materials, 2012, 324, 2355–2359.
[11] Yang L., Sun X.Y., Zhen L., Zhang Y.B., Hyperfine structure variations in an Fe–Cr–Co alloy exposed to electron irradiation: Mössbauer spectroscopy characterization, Nuclear Instruments and Methods in Physics Research B, 2014, 338, 52–55.
[12] Belozerov E.V., Mushnikov N.V., Ivanova G.V., Shchegoleva N.N., Serikov V.V., Kleinerman N.M., Vershinin A.V., Uimin M. A., High strength magnetically hard Fe–Cr–Co based alloys with reduced content of chromium and cobalt, The Physics of Metals and Metallography, 2012, 113(4) 319–325.
[13] Ivanova G.V., N Shchegoleva.N., Serikov V.V., Kleinerman N.M., Belozerov E.V., Structure of a W-enriched phase in Fe–Co–Cr–W–Ga alloys, Journal of Alloys and Compounds, 2011, 509, 1809–1814.
[14] Korneva A., Korznikova G., Berent K., Korznikov A., Kashaev R., Bogucka J., Sztwiertnia K., Microstructure evolution and magnetic properties of hard magnetic FeCr22Co15 alloy subjected to tension combined with torsion, Journal of Alloys and Compounds, 2014, 615, S300-S303.
[15] Belozerov E.V., Ivanova G.V., Shchegoleva N. N., Serikov V.V., Kleinerman N.M., Vershinin A.V., Gaviko V.S., Mushnikov N.V., The role of plastic deformation in the creation of high strength in hard magnetic alloys Fe–Cr–Co–W–Ga, The Physics of Metals and Metallography, 2012, 113(3) 312–318.
[16] Ahmed Z., Ul Haq A., Grain size effect on magnetic properties of Fe–28Cr–15Co permanent magnets as a function of Mo content, Physica Status Solidi: C, 2004, 1(4) 1732–1735.
[17] Kaneko H., Homma M., Nakamura K., New ductile permanent magnet of Fe–Cr–Co system, in Proceedings of AIP Conference, 1971, 5, 1088–1092.
[18] Kaneko H., Homma M., Nakamura K., Miura M., Fe-Cr-Co permanent magnet alloys containing silicon, IEEE Transactions on Magnetic, 1973, 347-348.
[19] Lv L.X., Zhen L., Xu C.Y., Sun X.Y., Phase field simulation of microstructure evolution in Fe-Cr–Co alloy during thermal magnetic treatment and step aging, Journal of Magnetism and Magnetic Materials, 2010, 322, 987-995.
[20] Korznikova G.F., Korznikov A.V., Gradient submicro-crystalline structure in Fe–Cr–Co system hard magnetic alloys, Materials Science and Engineering: A, 2009, 503, 99–102.
[21] Tao S., Ahmad Z., Khan I.U., Zhang P., Zheng X., Phase, microstructure and magnetic properties of 45.5 Fe-28Cr-20Co-3Mo-1.5 Ti-2Nb permanent magnet, Journal of Magnetism and Magnetic Materials, 2019, 469, 342–348.
[22] Ahmad Z., Ul Haq A., Texture, microstructure and magnetic properties of Fe–28Cr–15Co–3.5Mo permanent magnet, Journal of Magnetism and Magnetic Materials, 2009, 321, 325–329.
[23] Findik F., Improvements in spinodal alloys from past to present, Mater. Des., 2012, 42, 131–146.
[24] Wang L.D., Chen C.L., Kang M.K., On the Daniel- Lipson’s wavelength formula of spinodal decomposition, Scripta Materialia, 2000, 42, 725–730.
[25] Dtichek B., Schwartz L.H., Diffraction study of spinodal decomposition in Cu-10 wt.% Ni-6 wt.%Sn, Acta Metallurgica, 1980, 28, 807-822.
[26] He Z., Chaturvedi M.C., A study of the asymmetry in intensity of the side-band around a (200) X-ray diffraction peak in Ni-Ge alloy, Scripta Metallorgica, 1992, 27, 247-251.
[27] Yinghui W., Xiaotin W., Sidebands of X-ray diffraction in aged hardened Cu-Ti alloy, Transactions of Nonferrous Metals Society of China, 1996, 6(4) 87-93.
[28] Shubakov V.S., High-coercivity decomposition in Fe–(15, 23)%Co–30%Cr–3%Mo-0.5%Ti alloys, Russian Metallurgy (Metally)., 2009, 2, 160–163.
[29] Kaneko H., Homma M., Fukunaga T., Okada M., Fe-Cr-Co permanent magnet alloys containing Nb and Al, IEEE Trans. Magn.,  1975, 11, 1440–1442.
[30] Tannous C., Gieraltowski J., The Stoner–Wohlfarth model of ferromagnetism, European Journal of Physics, 2008, 29, 475.
[31] Drápal S., The origin of anisotropy in Fe-Cr-Co alloys, Czechoslovak Journal of Physics: B, 1987, 37, 1174-1182.
[32] Belli Y., Okada M., Thomas G., Homma M., Kaneko H., Microstructure and magnetic properties of Fe‐Cr‐Co‐V alloys, Journal of Applied Physics, 1978, 49, 2049–2051.