بررسی تاثیر سیلیسیم بر قابلیت ریخته گری آلیاژهای Al-Cu-Si

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مواد و متالورژی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

2 استادیار، گروه مهندسی مواد و متالورژی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

3 دانشیار، گروه مهندسی مواد و متالورژی، دانشگاه بین‌المللی امام خمینی (ره)، قزوین

10.22034/frj.2021.246789.1128

چکیده

در این تحقیق، اثر افزودن مقادیر مختلف سیلیسیم (1، 2، 3 و 5 درصد وزنی) بر ریزساختار و قابلیت ریخته‌گری آلیاژهای هیپویوتکتیک Al-4.5Cu-Si مورد بررسی قرار گرفته است. بر اساس نتایج به دست آمده، افزودن سیلیسیم موجب افزایش ابعاد و کسر حجمی تیغه­های سیلیسیم یوتکتیک در ساختار آلیاژ می­شود. افزودن سیلیسیم همچنین موجب بهبود سیالیت ریخته­گری، کاهش میزان تخلخل‌های ساختاری و ارتقای مقاومت آلیاژ در مقابل پارگی گرم می­شود. نتایج آزمون ریخته­گری میله محدود حاکی از آن است که شاخص حساسیت به پارگی گرم آلیاژ پس از افزودن 1، 3 و 5 درصد وزنی سیلیسیم به ترتیب حدود 48، 78 و 88 درصد کاهش می­یابد. در توافق با نتایج آزمون پارگی گرم، حضور گسترده بازوهای دندریتی و تخلخل­های انقباضی بر روی سطح شکست پارگی گرم آلیاژ A206 حاکی از توانایی اندک مذاب این آلیاژ در تغذیه انقباضات انجمادی و ترمیم ترک­های گرم ایجاد شده است. با افزایش غلظت سیلیسیم میزان تخلخل­های انقباضی روی سطح شکست پارگی گرم کاهش یافته و به­واسطه افزایش سیالیت و میزان فاز یوتکتیک سه تایی Al-Si-Cu و در نتیجه بهبود شرایط تغذیه و ترمیم ترک­های گرم شکل گرفته هنگام انجماد، میزان دندریت­های آزاد روی سطح تا حد چشم‌گیری کاهش می­یابد و فضای مابین دندریت­ها به نحو موثری توسط مذاب تغذیه می­شود. با این­حال در نمونه حاوی 5 درصد وزنی سیلیسیم میزان ذرات سیلیسیم یوتکتیک روی سطح شکست افزایش یافته و علائم شکست ترد روی سطح شکست پارگی گرم پدیدار می­شود.

کلیدواژه‌ها

موضوعات


[1]    Ganjefard K., Taghiabadi R., Noghani M.T., Ghoncheh M.H. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si, International Journal of Mineral Metallurgy and Material. 2020. https://doi.org/10.1007/s12613-020-2039-7.
[2]    Choi H., Cho W., Konishi H., Kou S., Li X., Nanoparticle-induced superior hot tearing resistance of A206 alloy, Metallurgical and Materials Transactions A, 2012, 44(4) 1897–1907.
[3]    Han N., Bian X., Li Z., Mao T., Wang C. Effect of Si on the microstructure and mechanical properties of the Al-4.5%Cu alloys, Acta Metallurgica Sinica (English Letters), 2006, 19(6) 405–410.
[4]   تقی‌آبادی ر، امامی م.، متالورژی ریخته­گری تحت فشار آلومینیم، سازمان انتشارات جهاد دانشگاهی واحد قزوین، 1395.
[5]    Di Sabatino M., Arnberg L., A review on the fluidity of Al based alloys, Metallurgical Science and Technology, 2004, 22(1) 9-15.
[6]   یوسفی ف، تقی­آبادی ر، باغشاهی س، بررسی تاثیر منگنز بر قابلیت ریخته گری آلیاژهای هیپویوتکتیک Al-2Ni-xMn، پژوهشنامه ریخته‌گری، پاییز 1396، 1(2) 69-78.
[7]    Lin S., A study of hot tearing in wrought aluminium alloys, Dissertation, Université du Québec à Chicoutimi, Canada, 1999, ISBN: 1412308348.
[8]    Li S., Sadayappan K., Apelian D., Characterization of hot tearing in Al cast alloys: methodology and procedures, International Journal of Cast Metals Research, 2011, 24(2) 88-95.
[9]    Li S., Sadayappan K., Apelian D. Role of grain refinement in the hot tearing of cast Al-Cu alloy, Metallurgical and Materials Transactions B, 2013, 44(3) 614–623.
[10]  Nabawy A.M., Samuel A.M., Samuel F.H., Doty H.W., Effects of grain refiner additions (Zr, Ti–B) and of mould variables on hot tearing susceptibility of recently developed Al–2 wt-%Cu alloy, International Journal of Cast Metals Research, 2013, 26(5) 308–317.
[11]  Li S., Sadayappan K., Apelian D., Effects of mold temperature and pouring temperature on the hot tearing of cast Al-Cu alloys, Metallurgical and Materials Transactions B, 2016, 47(5) 2979–2990.
[12]  Spittle J.A., Cushway A.A., Influences of superheat and grain structure on hot-tearing susceptibilities of AI-Cu alloy castings, Metals Technology, 1983, 10(1) 6–13.
[13]  Nasreesfahani M.R., Niroumand B., Effect of melt super heat on hot tearing of A206 aluminum alloy, Proceedings of Iran International Aluminum Conference (IIAC2009) Ed. Soltanieh M., Tehran, Iran, 2009, 47-52.
[14]  Veldman N.L.M., Dahle A.K., StJohn D.H., Arnberg L., Dendrite coherency of Al-Si-Cu alloys, Metallurgical and Materials Transactions A, 2001, 32(1) 147–155.
[15]  Lemieux A., Langlais J., Bouchard D., Grant Chen X., Effect of Si, Cu and Fe on mechanical properties of cast semi-solid 206 alloys, Transactions of Nonferrous Metals Society of China, 2010, 20(9) 1555–1560.
[16]  Lemieux A., Langlais J., Chen X.G., Reduction of hot tearing of cast semi-solid 206 alloys, Solid State Phenomena, 2012, 192–193, 101–106.
[17]  Campbell J., Complete Casting Handbook, Butterworth-Heinemann (Elsevier) 2011, UK.
[18]  Kamguo Kamga H., Larouche D., Bournane M., Rahem A., Hot tearing of aluminum–copper B206 alloys with iron and silicon additions, Materials Science and Engineering: A, 2010, 527(27–28) 7413–7423.
[19]  Kamga H.K., Larouche D., Bournane M., Rahem A., Mechanical properties of aluminium–copper B206 alloys with iron and silicon additions, International Journal of Cast Metals Research, 2012, 25(1) 15–25.
[20]  Liu K., Cao X., Chen X.-G., Tensile properties of Al-Cu 206 cast alloys with various iron contents, Metallurgical and Materials Transactions A, 2014, 45(5) 2498–2507.
[21]  Elgallad E.M., Chen X.-G., On the microstructure and solution treatment of hot tearing resistant semi-solid 206 alloy, Materials Science and Engineering: A, 2012, 556, 783–788.
[22]  Kang B.K., Sohn I., Effects of Cu and Si contents on the fluidity, hot tearing, and mechanical properties of Al-Cu-Si alloys, Metallurgical and Materials Transactions A, 2018, 49(10) 5137–5145.
[23]  Lemieux A., Langlais J., Bouchard D., Grant Chen X., Effect of Si, Cu and Fe on mechanical properties of cast semi-solid 206 alloys, Transactions of Nonferrous Metals Society of China, 2010, 20(9) 1555–1560.
[24]  Li W., Cui S., Han J., Xu C., Effect of Silicon on the casting properties of Al-5.0% Cu alloy, Rare Metals, 2006, 25(6) 133–135.
[25]  تقی‌آبادی ر.، تلافی نوغانی م.، کریمی ی.، ایرانشاهی م.، نظری م.، تاثیر عملیات حرارتی و مس بر خواص کششی و اندیس کیفیت آلیاژهای Al-7Si-0.35Mg-xFe، فصلنامه پژوهشی فرایندهای نوین در مهندسی مواد، 1396، 11(1) 65-75.
[26]  Raghavan V., Al-Cu-Si (Aluminum-Copper-Silicon), Journal of Phase Equilibria and Diffusion, 2007, 28(2) 180–182.
[27]  Monroe C., Beckermann C., Development of hot tear indicator for steel castings, Materials Science and Engineering A, 2005, 413-414, 30-36.
[28]  Mollard F.R., Flemings M.C., Nyama E.F., Understanding aluminium fluidity: the key to advanced cast products, AFS Trans., 1987, 95, 647- 652.
[29]  Casari D., The grain refinement and the Ni/V contamination in the A356 aluminum casting alloy: an experimental study on impact and tensile properties, Dissertation, Università degli Studi di Ferrara, 2013.
Zhang W.D., Yang J., Dang J.Z., Liu Y., Xu H., Effects of Si, Cu and Mg on the High-Temperature Mechanical Properties of Al-Si-Cu-Mg Alloy, Advanced Materials Research, 2013, 652.