بررسی و کنترل آسیب های وارد شده به مذاب آلیاژهای آلومینیوم ریختگی در حین آماده سازی مذاب و ریخته‌گری

نوع مقاله : مقاله علمی مروری

نویسنده

استادیار، گروه آموزشی مهندسی مواد و متالورژی،دانشگاه اراک، استادیار

10.22034/frj.2022.322829.1148

چکیده

یکی از الزامات اصلی تولید قطعات ریختگی آلیاژ های آلومینیوم، ارزیابی دقیق کیفیت مذاب است و تاکنون روش‌های متعددی برای افزایش کیفیت مذاب این آلیاژها ارائه شده‌اند که مرسوم‌ترین آنها فرایند گاززدایی چرخش، استفاده از فلاکس و فیلترهای سرامیکی هستند. در حالی که هیدروژن محلول در مذاب آلیاژهای آلومینیوم عامل اصلی کاهش کیفیت قطعات ریختگی آلومینیومی قلمداد می شود، این مقاله با بررسی پژوهش‌های منتشر شده نشان می‌ دهد که هیدروژن هیچ نقشی در کیفیت ابن آلیاژها ندارد و تنها عامل موثر بر کیفیت این آنها فیلم‌های اکسیدی و آخال‌ها هستند. همچنین در این مقاله روشی مبتنی بر انجام آزمون فشار کاهش یافته و کشش تک محوری برای ارزیابی آسیب‌های وارد شده به مذاب آلیاژهای آلومینیوم در مراحل مختلف تولید ارائه شده است که استفاده از آن می‌تواند منجر به ارزیابی مناسب کیفیت آلیاژهای ریختگی آلومینیوم و میزان آسیب وارد شده به مذاب در هر یک از مراحل تولید شود.

کلیدواژه‌ها

موضوعات


[1] Sigworth G., Understanding Quality in Aluminum Castings, International Journal of Metalcasting 2011, 5, 7–22.
[2] Nebreda J. L., Patel J. B., Fan Z., Improved Degassing Efficiency and Mechanical Properties of A356 Aluminium Alloy Castings by High Shear Melt Conditioning (Hsmc) Technology, Journal of Materials Processing Technology, 2021, 294, 117146.
[3] Puga H., Barbosa J., Carneiro V. H., F.V. Barbosa, J.C. Teixeira, Optimizing High-Volume Ultrasonic Melt Degassing using Synchronized Kinematic Translation, Journal of Materials Research and Technology, 2021, 14, 2832-2844.
[4] Dilner D., Lu Q., Mao H., Xu W., Zwaag S. V. D., Selleby M., Process-time Optimization of Vacuum Degassing Using a Genetic Alloy Design Approach, Materials, 2014, 7, 7997-8011.
[5] Eisaabadi G., Tiryakioğlu M., Davami P., Kim S. K., Yoon Y. O., Yeom G. Y., Kim N. S., The Effect of Remelting on the Melt and Casting Quality in Al–7%Si–Mg Castings, Materials Science and Engineering: A, 2014, 605,  203-209.
[6] Tiryakioğlu M., Campbell J., Alexopoulos N. D., On the ductility of cast Al-7 pct Si-Mg alloys, Metallurgical and Materials Transactions A, 2009, 40(4) 1000-1007.
[7] Peng J., Tang X., He J., Xu D., Effect of heat treatment on microstructure and tensile properties of A356 alloys, Transactions of Nonferrous Metals Society of China, 2011, 21(9) 1950-1956.
[8] Möller H., Govender G., Stumpf W., Investigation of the T4 and T6 heat treatment cycles of semi-solid processed aluminium alloy A356, Open Materials Science Journal, 2008, 2, 11-18.
[9] Davidson C., Griffiths J., Badiali M., Zanada A., Fatigue properties of a semi-solid cast Al–7Si–0.3 Mg–T6 alloy, Met. Sci. Technol., 2000, 18(2),  27-31.
[10] Möller H., Stumpf W., Pistorius P., Influence of elevated Fe, Ni and Cr levels on tensile properties of SSM-HPDC Al-Si-Mg alloy F357, Transactions of Nonferrous Metals Society of China, 2010, 20, s842-s846.
[11] Merlin M., Garagnani G.L., Mechanical and microstructural characterization of A356 castings realized with full and empty cores, Metallurgical Science and Tecnology , 2009, 27(1) 21-30.
[12] Möller H., Govender G., Stumpf W. E., Application of shortened heat treatment cycles on A356 automotive brake calipers with respective globular and dendritic microstructures, Transactions of Nonferrous Metals Society of China, 2010, 20(9) 1780-1785.
[13] Juang S. H., Wu S. M., Study on mechanical properties of A356 alloys enhanced with preformed thixotropic structure, Journal of Marine Science and Technology, 2008, 16(4) 271-274.
[14] Shih T., Chen P., Tsai W., Tensile properties of forged direct-squeeze-cast Al-(6.0∼ 8.0 mass %) Si-(0.3∼ 0.52 mass %) Mg alloy, Materials transactions, 2008, 49(4), 737-745.
[15] Bangyikhan K., Effects of oxide film, Fe-rich phase, porosity and their interactions on tensile properties of cast Al-Si-Mg alloys, University of Birmingham, 2005.
[16] Davidson C., Griffiths J., Zanada A., Fatigue properties of squeeze, semisolid and gravity diecast Al-Si-Mg alloy, The Proceedings of Conference of Tokai Branch 2011, 79-84.
[17] Liu G.Y., Effect of ageing heat treatment on the hardness and tensile properties of aluminum A356. 2 casting alloy, MSc. Thesis, MCMASTER, 2009.
[18] Ogris E., Development of Al-Si-Mg Alloys for semi-solid processing and silicon spheroidization treatment (SST) for Al-Si cast alloys, Swiss Federal Institute of Technology Zurich, 2002.
[19] Zhu M., Jian Z., Yao L., Liu C., Yang G., Zhou Y., Effect of mischmetal modification treatment on the microstructure, tensile properties, and fracture behavior of Al-7.0% Si-0.3% Mg foundry aluminum alloys, Journal of Materials Science, 2011, 46(8) 2685-2694.
[20] Liu L., Samuel F., Effect of inclusions on the tensile properties of Al–7% Si–0.35% Mg (A356. 2) aluminium casting alloy, Journal of materials science, 1998, 33(9) 2269-2281.
[21] Bogdanoff T., Dahlström J., The influence of copper on an Al-Si-Mg alloy (A356)-Microstructure and mechanical properties, 2009.
[22] Khomamizadeh F., Ghasemi A., Evaluation of quality index of A-356 aluminum alloy by microstructural analysis, Scientia Iranica, 2004, 11(4) 386-391.
[23] Lados D. A., Apelian D., Fatigue crack growth characteristics in cast Al–Si–Mg alloys: Part II. Life predictions using fatigue crack growth data, Materials Science and Engineering: A, 2004, 385(1) 187-199.
[24] Möller H., Govender G., Stumpf W., Pistorius P., Comparison of heat treatment response of semisolid metal processed alloys A356 and F357, International Journal of Cast Metals Research, 2010, 23(1) 37-43.
[25] Moller H., Govender G., Stumpf W. E., Knutsen R., Influence of temper condition on microstructure and mechanical properties of semisolid metal processed Al–Si–Mg alloy A356, International Journal of Cast Metals Research, ‎2009, 22, 417-421.
[26] Emadi D., Whiting L., Sahoo M., Sokolowski J., Burke P., Hart M., Optimal heat treatment of A356. 2 alloy, TMS, 2003, 983-990.
[27] Kumai S., Tanaka T., Zhu H., Sato A., Tear Toughness of Permanent Mold Cast and DC Cast A356 Aluminum Alloys, Materials Transactions, 2004, 45(5) 1706-1713.
[28] Lee K., Kwon Y. N., Lee S., Correlation of microstructure with mechanical properties and fracture toughness of A356 aluminum alloys fabricated by low-pressure-casting, rheo-casting, and casting-forging processes, Engineering Fracture Mechanics, 2008,75(14) 4200-4216.
[29] Mallapur D., UdupaK.R., Kori S., Kadadevarmath R.S., Influence of grain refining and modification on microstructure and mechanical properties of cast and forged A356 alloy–A comparative study, Materials Characterization, 2008, 59(3) 283-289 .
[30] Zhang L., Zhou B., Zhan Z., Jia Y., Shan S., Zhang B., Wang W., Mechanical properties of cast A356 alloy, solidified at cooling rates enhanced by phase transition of a cooling medium, Materials Science and Engineering: A, 2007,  448(1) 361-365.
[31] Shivkumar S., Ricci S., Keller C., Apelian D., Effect of solution treatment parameters on tensile properties of cast aluminum alloys, Journal of Heat Treating, 1990, 8(1) 63-70.
[32] Mallapur D., Udupa K. R., Kori S., Influence of grain refiner and modifier on the microstructure and mechanical properties of A356 alloy, International Journal of Engineering Science, 2011, 46, 1622–1627.
[33] Jahromi S. A. J., Dehghan A., Malekjani S., Effects of optimum amount of Sr and Sb modifiers on tensile, impact and fatigue properties of A356 aluminum alloy, Iranian Journal of Science and Technology,  2004, 28(B2) 225-232.
[34] Fadavi Boostani A., Tahamtan S., Microstructure and mechanical properties of A356 thixoformed alloys in comparison with gravity cast ones using new criterion, Transactions of Nonferrous Metals Society of China, 2010, 20(9) 1608-1614.
[35] Dezecot S., Maurel V., Buffiere J. Y., Szmytka F., Koster A., 3d Characterization and Modeling of Low Cycle Fatigue Damage Mechanisms at High Temperature in A Cast Aluminum Alloy, Acta Materialia, 2017, 123, 24-34.
[36] Timelli G., Caliari D., Rakhmonov J., Influence of Process Parameters and Sr addition on the microstructure and casting defects of LPDC A356 alloy for engine blocks, Journal of Materials Science & Technology, 2016, 32, 515-523.
[37] Houria M., Nadot Y., Fathallah R., Roy M., Maijer D. M., Influence of Casting Defect and SADS on The Multiaxial Fatigue Behaviour of A356-T6 Alloy Including Mean Stress Effect, International Journal of Fatigue, 2015, 80, 90-102.
[38] Nam S. W., Lee D. H., The effect of Mn on the mechanical behavior of Al alloys, Metals and Materials, 2000, 6, 13.
[39] Hu T., Ma K., Topping T. D., Saller B., Yousefiani A., Schoenung J. M., Lavernia E. J., Improving the Tensile Ductility and Uniform Elongation of High-Strength Ultrafine-Grained Al Alloys by Lowering the Grain Boundary Misorientation Angle, Scripta Materialia, 2014,78-79, 25-28.
[40] Campbell J., Complete casting handbook: metal casting processes, metallurgy, techniques and design, Butterworth-Heinemann, 2015.
[41] Wallace G., Production of secondary aluminum, Fundamentals of Aluminum Metallurgy, Elsevier, 2011, 70-82.
[42] Campbell J., Castings, 2nd ed., Butterworth-Heinemann, Oxford, U.K., 2003.
[43] Divandari M., J. Campbell, A new technique for the study of aluminum oxide films, Aluminum Trans., 2000, 2(2) 233-238.
[44] Staley J. T. Jr, Tiryakioğlu M., Campbell J., The effect of increased HIP temperatures on bifilms and tensile properties of A206-T71 aluminum castings, Materials Science and Engineering: A, 2007, 460, 324-334.
[45] Divandari M., Campbell J., Mechanisms of bubble trail formation in castings, Trans. AFS, 2001, 109, 433-442.
[46] BMW Engine Block Casting: How It's Made? 2015.
[47] Shevchenko D., McBride D., Humphreys N., Croft T., Withey P., Green N., Cross M., Centrifugal casting of complex geometries: computational modelling and validation experiments, Modeling of Casting, Welding and Advanced Solidification Processes–X11 (eds. SL Cockcroft and DM Maijer), Pub TMS, 2009, 459-466.
[48] Kiger K. T., Duncan J. H., Air-entrainment mechanisms in plunging jets and breaking waves, Annual Review of Fluid Mechanics, 2012, 44, 563-596.
[49] Mostafaei M., Ghobadi M., Eisaabadi G., Uludağ M., Tiryakioğlu M., Evaluation of the effects of rotary degassing process variables on the quality of A357 aluminum alloy castings, Metallurgical and Materials Transactions B,  2016, 47(6) 3469-3475.
[50] Al Alloys: FDU Mark 10 MTS 1500, 2017.
[51] Mi J., Harding R. A., Campbell J., Effects of the entrained surface film on the reliability of castings, Metallurgical and Materials Transactions A, 2004, 35, 2893–2902.
[52] Ainsworth M. J., Metal-Foam Interface Stability During the Filling of Lost Foam Moulds with Aluminium Alloys, School of Metallurgy and Materials, University of Birmingham, Birmingham, 2010.
[53] Gopalan R., Prabhu N. K., Oxide Bifilms in Aluminium Alloy Castings – A Review, Materials Science and Technology, 2011, 27, 1757-1769.
[54] Uludağ M., Çetin R., Dişpinar D., Tiryakioğlu M., On the Interpretation of Melt Quality Assessment of A356 Aluminum Alloy by the Reduced Pressure Test: The Bifilm Index and Its Physical Meaning, International Journal of Metalcasting, 2018, 12, 853–860.
[55] Kumar G.S.V., Mukherjee M., Garcia-Moreno F., Banhart J., Reduced-Pressure Foaming of Aluminum Alloys, Metallurgical and Materials Transactions A, 2013, 44, 419-426.
[56] Ghanaatian M.H., Raiszadeh R., Effect of different methods for removing bifilm defects from A356 aluminum alloy, Metallurgical and Materials Transactions B, 2022, 43, 503–511.
[57] Yue T. M., Chadwick G., Squeeze casting of light alloys and their composites, Journal of materials processing Technology, 1996, 58(2-3) 302-307.
[58] Ran G., Zhou J., Wang Q., The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy, Journal of alloys and compounds, 2006, 421(1-2) 80-86.
[59] Fox S., Campbell J., Visualisation of oxide film defects during solidification of aluminium alloys, Scripta Materialia, 2000, 43(10) 881-886.
[60] Tiryakioğlu M., Yousefian P., P.D. Eason, Quantification of entrainment damage in A356 aluminum alloy castings, Metallurgical and Materials Transactions A, 2018, 49(11) 5815-5822.
[61] Le V. D., Saintier N., Morel F., Bellett D., Osmond P., Investigation of the effect of porosity on the high cycle fatigue behaviour of cast Al-Si alloy by X-ray micro-tomography, International Journal of Fatigue, 2018, 10624-37.
[62] Hwang J., Doty H., Kaufman M., The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys, Materials Science and Engineering: A, 2008, 488(1-2) 496-504.
[63] Bogdanoff T., Lattanzi L., Merlin M., Ghassemali E., Jarfors A. E., Seifeddine S., The complex interaction between microstructural features and crack evolution during cyclic testing in heat-treated Al–Si–Mg–Cu cast alloys, Materials Science and Engineering: A, 2021,  825141930.
[64] Fisher J. C., The fracture of liquids, Journal of applied Physics, 1948, 19(11) 1062-1067.
[65] Tiryakioğlu M., The effect of hydrogen on pore formation in aluminum alloy castings: myth versus reality, Metals, 2020, 10(3) 368.
[66] Nakajima H., Porous metals with directional pores, Springer, 2013.
[67] Sabau A., Viswanathan S., Microporosity prediction in aluminum alloy castings, Metallurgical and Materials Transactions B, 2002, 33(2) 243-255.
[68] Tiryakioğlu M., Solubility of hydrogen in liquid aluminium: reanalysis of available data, International Journal of Cast Metals Research, 2019, 32(5-6) 315-318.
[69] Chen X. G., Gruzleski J., Influence of melt cleanliness on pore formation in aluminium—silicon alloys, International Journal of Cast Metals Research, 1996, 9(1)17-26.
[70] Brondyke K., Hess P., Interpretation of vacuum gas test results for aluminum alloys Trans, TMS-AIME, 1964, 230, 1452.
[71] Erzi E., Tiryakioğlu M., A simple procedure to determine incoming quality of aluminum alloy ingots and its application to A356 alloy ingots, International Journal of Metalcasting, 2020, 1-6.
[72] Netto N., Tiryakioğlu M., Eason P. D., Őndeş B., Erzi E., The effect of friction stir processing on bifilms and structural quality in A356 alloy castings, Shape Casting, Springer, 2019, 321-328.
[73] Erzi E., Gürsoy Ö., Yüksel Ç., Colak M., Dispinar D., Determination of acceptable quality limit for casting of A356 aluminium alloy: supplier’s quality index (SQI), Metals, 2019,  9(9) 957.
[74] Campbell J., A draft melting procedure for Al alloys, Shape Casting: 5th International Symposium 2014, Springer, 2014, 3-9.
[75] Yüksel Ç., Aybarc U., Erzi E., Dispinar D., Cigdem M., Melt cleaning efficiency of various fluxes for A356 alloy, Shape Casting, Springer, 2019, 273-280.
[76] Chvala J., Tiryakioğlu M., Hudyma N., Eason P., Evolution of filling system design for an A356-T6 aluminum housing casting, Shape Casting: 5th International Symposium, Springer, 2014, 59-65.
[77] Mohanty P. S., Experimental study on pore nucleation by castings, Trans. AFS, 1995, 103, 555-564.
[78] Tiryakioğlu M., Eason P. D., Campbell J., Fatigue life of ablation-cast 6061-T6 components, Materials Science and Engineering: A,  2013, 559, 447-452.
[79] Tiryakioğlu M., On the Intrinsic and Extrinsic Microstructure-Property Effects in Cast Aluminum Alloys, Shape Casting: 7th International Symposium, Springer, 2019, 293-302.
[80] Samuel A. M., Samuel F. H., Effect of melt treatment, solidification conditions and porosity level on the tensile properties of 319.2 endchill aluminium castings, Journal of Materials Science, 1995, 30(19) 4823-4833.