بررسی فازهای موجود در یک سوپرآلیاژ ریختگی پایه کبالت Co-Al-W با استفاده از روش‌های تجربی و نرم‌افزار JMatPro

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد، دانشکده مهندسی متالورژی و مواد، دانشگاه علم و صنعت ایران

3 استاد، دانشکده مهندسی متالورژی و مواد دانشگاه علم و صنعت ایران

4 دانشیار، گروه مهندسی مواد و پلیمر، دانشکده مهندسی، دانشگاه حکیم سبزواری

10.22034/frj.2018.120874.1030

چکیده

تقاضا برای افزایش راندمان توربین‌های گازی، محرک اصلی برای توسعه نسل‌های جدید مواد دمای بالاست. در ‏این راستا سوپرآلیاژهای جدید پایه کبالت ‏Co-Al-W‏ حاوی فاز استحکام بخش '‏‎γ که پتانسیل مناسبی جهت ‏بکارگیری در دمای بالا دارند مورد توجه قرار گرفته‌اند. هدف اصلی این تحقیق بررسی فازهای ایجاد شده در یک ‏سوپرآلیاژ ریختگی چند عنصری از این خانواده، با استفاده از روش‌های تجربی و نرم‌افزار ‏JMatPro‏ است. به این ‏منظور پس از طراحی آلیاژ، عملیات ریخته‌گری آن در کوره ‏VIM‏ انجام شد. آلیاژ با استفاده از ‏SEM-EDS، ‏FE-SEM، ‏XRD‏ و ‏DSC‏ مورد آنالیز قرار گرفت. نتایج تجربی نشان داد که در زمینه آلیاژ ریختگی (فاز γ)، تنها ‏فاز '‏‎γ و کاربیدهای ‏MC‏ (غنی از تیتانیم و تنگستن) حضور دارند. نتایج نرم‌افزار به خوبی حضور فازهای مذکور ‏و دماهای تشکیل آن‌ها را پیش‌بینی کرد. به علاوه نتایج نرم‌افزار نشان داد که فاز µ باید در ریزساختار آلیاژ ‏وجود داشته باشد. طبق نتایج و پیش‌بینی‌های نرم‌افزار، عملیات حرارتی در دمای ‏900 درجه سانتیگراد و زمان 48 ساعت ‏انجام شد و فاز غنی از تنگستن µ در ریزساختار به وجود آمد. نتایج نشان داد که از نظر ترمودینامیکی تشکیل ‏فاز µ لازم است اما تامین شرایط سینتیکی در تشکیل آن نقش مهمی دارد.‏

کلیدواژه‌ها

موضوعات


‎[1] Reed R. C., The superalloys: Fundamentals and applications, Cambridge University Press, ‎‎2008.‎
‎[2] Donachie M. J., Donachie S. J., Superalloys: A technical guide, ASM International, 2002.‎
‎[3] Geddes B., Leon H., Huang X., Superalloys: alloying and performance, ASM ‎International, 2010.‎
‎[4] Sato J., Omori T., Oikawa K., Ohnuma I., Kainuma R., Ishida K., Cobalt-base high-‎temperature alloys, Science, 2006, 312(5770)90-91.‎
‎[5] Titus M. S., Suzuki A., Pollock T. M., Creep and directional coarsening in single ‎crystals of new γ–γ′ cobalt-base alloys, Scripta Materialia, 2012, 66(8)574-577.‎
‎[6] Tanaka K., Ooshima M., Tsuno N., Sato A., Inui H., Creep deformation of single crystals ‎of new Co–Al–W-based alloys with FCC/L12 two-phase microstructures, Philosophical ‎Magazine, 2012, 92(32)4011-4027.‎
‎[7] Xue F., Zenk C., Freund L., Hoelzel M., Neumeier S., Göken M., Double minimum creep ‎in the rafting regime of a single-crystal Co-base superalloy, Scripta Materialia, 2018, 142, 129-‎‎132.‎
‎[8] Neumeier S., Freund L., Göken M., Novel wrought γ/γ′ cobalt base superalloys with high ‎strength and improved oxidation resistance, Scripta Materialia, 2015, 109, 104-107.‎
‎[9] Bauer A., Neumeier S., Pyczak F., Singer R., Göken M., Creep properties of different γ′-‎strengthened Co-base superalloys, Materials Science and Engineering: A, 2012, 550, 333-341.‎
‎[10] Suzuki A., Pollock T. M., High-temperature strength and deformation of γ/γ′ two-phase ‎Co–Al–W-base alloys, Acta Materialia, 2008, 56(6)1288-1297.‎
‎[11] Xue F., Zhou H., Chen X., Shi Q., Chang H., Wang M., Ding X., Feng Q., Creep ‎behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982 ∘C, MATEC ‎Web of Conferences, 2014.‎
‎[12] Kobayashi S., Tsukamoto Y., Takasugi T., Chinen H., Omori T., Ishida K., Zaefferer S., ‎Determination of phase equilibria in the Co-rich Co–Al–W ternary system with a diffusion-‎couple technique, Intermetallics, 2009, 17(12)1085-1089.‎
‎[13] Lass E. A., Williams M. E., Campbell C. E., Moon K.-W., Kattner U. R., γ′ phase ‎stability and phase equilibrium in ternary Co-Al-W at 900° C, Journal of Phase Equilibria and ‎Diffusion, 2014, 35(6)711-723.‎
‎[14] Tsukamoto Y., Kobayashi S., Takasugi T., The stability of γ’-Co3 (Al, W) phase in Co-‎Al-W ternary system, Materials Science Forum, 2010, 654, 448-451.‎
‎[15] Yan H.-Y., Coakley J., Vorontsov V. A., Jones N. G., Stone H. J., Dye D., Alloying and ‎the micromechanics of Co–Al–W–X quaternary alloys, Materials Science and Engineering: A, ‎‎2014, 613, 201-208.‎
‎[16] Kobayashi S., Tsukamoto Y., Takasugi T., Phase equilibria in the Co-rich Co-Al-W-Ti ‎quaternary system, Intermetallics, 2011, 19(12)1908-1912.‎
‎[17] Shinagawa K., Omori T., Sato J., Oikawa K., Ohnuma I., Kainuma R., Ishida K., Phase ‎equilibria and microstructure on γ′ phase in Co-Ni-Al-W system, Materials Transactions, 2008, ‎‎49(6)1474-1479.‎
‎[18] Yan H.-Y., Vorontsov V., Dye D., Alloying effects in polycrystalline γ′ strengthened ‎Co–Al–W base alloys, Intermetallics, 2014, 48, 44-53.‎
‎[19] Lopez‐Galilea I., Zenk C., Neumeier S., Huth S., Theisen W., Göken M., The thermal ‎stability of intermetallic compounds in an as‐cast SX Co‐base superalloy, Advanced ‎Engineering Materials, 2015, 17(6)741-747.‎
‎[20] Koßmann J., Zenk C. H., Lopez-Galilea I., Neumeier S., Kostka A., Huth S., Theisen W., ‎Göken M., Drautz R., Hammerschmidt T., Microsegregation and precipitates of an as-cast ‎Co-based superalloy-microstructural characterization and phase stability modelling, Journal ‎of Materials Science, 2015, 50(19)6329-6338.‎
‎[21] Shi L., Yu J., Cui C., Sun X., Temperature dependence of deformation behavior in a ‎Co–Al–W-base single crystal superalloy, Materials Science and Engineering: A, 2015, 620, 36-‎‎43.‎
‎[22] Zhao J.-C., Henry M. F., The thermodynamic prediction of phase stability in ‎multicomponent superalloys, Journal of Metals, 2002, 54(1)37-41.‎
‎[23] Dupin N., Sundman B., A thermodynamic database for Ni‐base superalloys, ‎Scandinavian Journal of Metallurgy, 2001, 30(3)184-192.‎
‎[24] Masoumi F., Jahazi M., Shahriari D., Cormier J., Coarsening and dissolution of γ′ ‎precipitates during solution treatment of AD730™ Ni-based superalloy: Mechanisms and ‎kinetics models, Journal of Alloys and Compounds, 2016, 658, 981-995.‎
‎[25] Saunders N., Guo U., Li X., Miodownik A., Schillé J.-P., Using JMatPro to model ‎materials properties and behavior, JOM, 2003, 55(12)60-65.‎
‎[26] Zschau H. E., Masset P., Schütze M., Oxidation protection of Ni‐base superalloys by ‎halogen treatment, Materials and Corrosion, 2011, 62(7)687-694.‎
‎[27] Wang B., Zhang F., Chen S., Kou S., Computational simulation of diffusion process in ‎multicomponent and multiphase systems in diffusion bonding, Science and Technology of ‎Welding and Joining, 2013, 18(6)451-457.‎
‎[28] Cornish L., Süss R., Watson A., Prins S., Building a thermodynamic database for ‎platinum-based superalloys: part I, Platinum Metals Review, 2007, 51(3)104-115.‎
‎[29] Watson A., Süss R., Cornish L., Building a thermodynamic database for platinum-‎based superalloys: Part II, Platinum Metals Review, 2007, 51(4)189-198.‎
‎[30] Zhu J., Titus M., Pollock T., Experimental investigation and thermodynamic modeling ‎of the co-rich region in the Co-Al-Ni-W quaternary system, Journal of Phase Equilibria and ‎Diffusion, 2014, 35(5)595-611.‎
‎[31] Cullity B., Elements of XRD, Prentice Hall, Ohaio, 1978.‎
‎[32] Shinagawa K., Omori T., Oikawa K., Kainuma R., Ishida K., Ductility enhancement by ‎boron addition in Co–Al–W high-temperature alloys, Scripta Materialia, 2009, 61(6)612-615.‎
‎[33] Sims C. T., Stoloff N.S., Hagel W. C., Superalloys II, 1987.‎
‎[34] Zhou Y., Volek A., Effect of carbon additions on hot tearing of a second generation ‎nickel-base superalloy, Materials Science and Engineering: A, 2008, 479(1)324-332.‎
‎[35] Tsunekane M., Suzuki A., Pollock T. M., Single-crystal solidification of new Co–Al–‎W-base alloys, Intermetallics, 2011, 19(5)636-643.‎
‎[36] Shinagawa K., Omori T., Sato J., Oikawa K., Ohnuma I., Kainuma R., Ishida K., Phase ‎Equilibria and Microstructure on γ' Phase in Co-Ni-Al-W System, Materials Transactions, ‎‎2008, 49(6)1474-1479.‎
‎[37] Goodhew P. J., Humphreys J., Beanland R., Electron microscopy and analysis, CRC ‎Press, Liverpool, 2000.‎
‎[38] Wei C.-N., Bor H.-Y., Chang L., The effects of carbon content on the microstructure ‎and elevated temperature tensile strength of a nickel-base superalloy, Materials Science and ‎Engineering: A, 2010, 527(16)3741-3747.‎
‎[39] Gong L., Chen B., Du Z., Zhang M., Liu R., Liu K., Investigation of solidification and ‎segregation characteristics of cast Ni-Base superalloy K417G, Journal of Materials Science ‎& Technology, 2018, 34(3)541-550.‎
‎[40] Berthod P., Michon S., Aranda L., Mathieu S., Gachon J., Experimental and ‎thermodynamic study of the microstructure evolution in cobalt-base superalloys at high ‎temperature, Calphad, 2003, 27(4)353-359.‎
‎[41] Pyczak F., Bauer A., Göken M., Lorenz U., Neumeier S., Oehring M., Paul J., Schell N., ‎Schreyer A., Stark A., Symanzik F., The effect of tungsten content on the properties of L1 2-‎hardened Co–Al–W alloys, Journal of Alloys and Compounds, 2015, 632, 110-115.‎
‎[42] Bocchini P. J., Sudbrack C. K., Noebe R. D., Dunand D. C., Seidman D. N., Effects of ‎titanium substitutions for aluminum and tungsten in Co-10Ni-9Al-9W (at%) superalloys, ‎Materials Science and Engineering: A, 2017, 705, 122-132.‎
‎[43] Sponseller D., Differential thermal analysis of nickel-base superalloys, Superalloys, 1996, ‎‎1996, 259-70.‎
‎[44] Jahangiri M., Boutorabi S., Arabi H., Study on incipient melting in cast Ni base IN939 ‎superalloy during solution annealing and its effect on hot workability, Materials Science and ‎Technology, 2012, 28(12)1402-1413.‎
‎[45] Long F., Yoo Y., Jo C., Seo S., Song Y., Jin T., Hu Z., Formation of η and σ phase in ‎three polycrystalline superalloys and their impact on tensile properties, Materials Science and ‎Engineering: A, 2009, 527(1)361-369.‎
‎[46] Hegde S., Kearsey R., Beddoes J., Designing homogenization–solution heat treatments ‎for single crystal superalloys, Materials Science and Engineering: A, 2010, 527(21)5528-‎‎5538.‎
‎[47] Xue F., Wang M., Feng Q., Alloying Effects on Heat‐Treated Microstructure in Co‐Al‐‎W‐Base Superalloys at 1300° C and 900° C, Superalloys, 2012, 813-821.‎
‎[48] Pelton A. D., Müller-Krumbhaar H., Kurz W., Brener E., Murch G. E., Binder K., Wagner ‎R., Kampmann R., Voorhees P. W., Fratzl P., Phase Transformations in Materials, Wiley-‎VCH Verlag GmbH, 2001.‎