تاثیر همزمان فوق‌گدازی مذاب و زمان نگهداری بر تغییرات ساختاری، مشخصه‌های انجمادی و سختی کامپوزیت Al-20Mg2Si-2Cu

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، شیمی و پلیمر- مرکز آموزش عالی فنی و مهندسی بوئین زهرا- قزوین

2 استاد، موسسه بین المللی فناوری مالزی-ژاپن

3 پسا دکترا، دانشگاه تکنولوژی مالزی

10.22034/frj.2022.322231.1147

چکیده

در این تحقیق تاثیر زمان‌های نگهداری مذاب برای مدت 15، 30 و 45 دقیقه در فوق‌گدازی 200، 250 و300 درجه سانتی‌گراد بر روی فازهای Mg2SiP اولیه، Mg2SiE یوتکتیکی، Al5FeSi، Al5Mg8Si6Cu2،Al2Cu، دمای تشکیل این فازها و نیز سختی کامپوزیت‌Al-20Mg2Si-2Cu مورد بررسی قرار گرفت. مشاهدات ریزساختاری و آنالیز کمی نشان داد که بهترین بهسازی در فوق‌گدازی 300 درجه سانتی‌گراد و زمان نگهداری 15 دقیقه ایجاد شد. در مقایسه با نمونه مرجع که دارای 100 درجه سانتی‌گراد فوق‌گدازی بود، شکل دندریتی و خشنِ ذرات Mg2SiP به چندوجهیِ ریز تبدیل گردید. اندازه متوسط ذرات بطور چشمگیری از 1179 به 5/255 میکرومتر کاهش پیدا کرد. مساحت ذرات و نسبت ابعادی بترتیب به میزان 83% و 13% کاهش یافت. تعداد ذرات در واحد سطح از 9 به 57 افزایش پیدا کرد. فوق‌گدازی موجب تبدیل β-Fe سوزنی به فاز Fe- αخط‌چینی شد، هرچند تغییر محسوسی در ویژگی فازهای Mg2SiE، Al5Mg8Si6Cu2 وAl2Cu مشاهده نشد. ارتباط مناسبی بین دمای تشکیل و تغییر ساختاری فازMg2SiP یافت شد. پس از اعمال فوق‌گدازی 300 درجه سانتی‌گراد به مدت 15دقیقه، دمای تشکیل فاز Mg2SiP از 3/647 به 4/664 درجه سانتی‌گراد افزایش یافت. کامپوزیت‌هایی که تحت عملیات فوق‌گدازی قرار گرفتند صرفنظر از دما و زمان، سختی بالاتری نسبت به نمونه مرجع نشان دادند. بیشترین سختی به میزان 1/82 ویکرز بدست آمد که می‌تواند مرتبط با افزایش تعداد ذرات و کاهش فاصله بین ذرات باشد.

کلیدواژه‌ها

موضوعات


[1]  Wu X. F., Wang Z. C., Wang K. Y., Zhao R. D., Wu F. F., Microstructural refinement and tensile properties enhancement of Al-10Mg2Si cast alloys by copper addition, Journal of Alloys and Compounds, 2021, 163058.
[2]  Tong X., Zhang D., Wang K., Lin J., Liu Y., Shi Z., Li Y., Lin J., Wen C., Microstructure and mechanical properties of high-pressure-assisted solidification of in situ Al–Mg2Si composites, Materials Science and Engineering: A, 733, 2018, 9–15.
[3]  Jiang W., Xu X., Zhao Y., Wang Z., Wu C., Pan D., Meng Z., Effect of the addition of Sr modifier in different conditions on microstructure and mechanical properties of T6 treated Al-Mg2Si in-situ composite, Materials Science and Engineering: A, 721, 2018, 263–273.
[4]  Jin Y., Fang H., Wang S., Chen R., Su Y., Guo J., Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al–Mg2Si composites, Materials Science and Engineering: A, 831, 2022, 142227.
[5]  Zhao Y. G., Qin Q. D., Hang Y. H., Zhou W., Jiang Q. C., In-situ Mg2Si/Al-Si-Cu composite modified by strontium, Journal of Materials Science, 40, 2005, 1831–1833.
[6]  Qin Q. D., Zhao Y. G., Liu C., Cong P. J., Zhou W., Strontium modification and formation of cubic primary Mg2Si crystals in Mg2Si/Al composite, Journal of Alloys and Compounds, 454, 2008, 142–146.
[7]  Tang P., Yu F., Teng X., Peng L., Wang K., Effect of beryllium addition and heat treatment on the microstructure and mechanical properties of the 15%Mg2Si/Al-8Si composite, Materials Characterization, 180 (2021) 111416.
[8]  R. Hadian, M. Emamy, N. Varahram, N. Nemati, The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite, Materials Science and Engineering A, 490, 2008, 250–257.
[9]  Nordin N. A., Farahany S., Abu Bakar T. A., Hamzah E., Ourdjini A., Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al-20%Mg<inf>2</inf>Si-xCe in situ composite solidified at a slow cooling rate, Journal of Alloys and Compounds, 650, 2015.
[10] Farahany S., Ghandvar H., Bozorg M., Nordin A., Ourdjini A., Hamzah E., Role of Sr on microstructure, mechanical properties, wear and corrosion behaviour of an Al–Mg2Si–Cu in-situ composite, Materials Chemistry and Physics, 239, 2020, 121954.
[11] Ghandvar H., Idris M. H., Ahmad N., Emamy M., Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al-15%Mg2Si in-situ composite, Materials Characterization, 135, 2018, 57–70.
[12] Nasiri N., Emamy M., Malekan A., Norouzi M. H., Microstructure and tensile properties of cast Al–15%Mg2Si composite: Effects of phosphorous addition and heat treatment, Materials Science and Engineering: A, 556 (2012) 446–453.
[13] Khorshidi R., Honarbakhsh Raouf A., Emamy M., Campbell J., The study of Li effect on the microstructure and tensile properties of cast Al–Mg2Si metal matrix composite, Journal of Alloys and Compounds, 509, 2011, 9026–9033.
[14] Yu H. C., Wang H. Y., Chen L., Zha M., Wang C., Li C., Jiang Q. C., Spheroidization of primary Mg2Si in Al-20Mg2Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process, Materials Science and Engineering: A, 685, 2017, 31–38.
[15] YANG C., LI Y., DANG B., LÜ H., LIU F., Effects of cooling rate on solution heat treatment of as-cast A356 alloy, Transactions of Nonferrous Metals Society of China, 25, 2015, 3189–3196.
[16] Du J., Iwai K., Modification of Primary Mg<SUB>2</SUB>Si Crystals in Hypereutectic Mg-Si Alloy by Application Alternating Current, MATERIALS TRANSACTIONS, 50 (2009) 562–569.
[17] میرک ع. ر.، قدسی م.، برسی اثر دمای ریختگی بر ریزساختار و خواص کششی گرم سوپرآلیاژ پایه آهن -نیکل, مهندسی متالورژی 21،2018، 108–117.
[18] Yin F. S., Sun X. F., Li J. G., Guan H. R., Hu Z. Q., Effects of melt treatment on the cast structure of M963 superalloy, Scripta Materialia, 48, 2003, 425–429.
[19] Cui H., Tan Y., Bai R., Li Y., Zhao L., Zhuang X., Wang Y., Chen Z., Li P., You X., Cui C., Effect of melt superheat treatment on solidification behavior and microstructure of new Ni–Co based superalloy, Journal of Materials Research and Technology, 15, 2021, 4970–4980.
[20] Pang S., Wu G. H., Liu W. C., Zhang L., Zhang Y., Conrad H., Ding W. J., Influence of pouring temperature on solidification behavior, microstructure and mechanical properties of sand-cast Mg-10Gd-3Y-0.4Zr alloy, Transactions of Nonferrous Metals Society of China, 25, 2015, 363–374.
[21] Wang Q., Geng H., Zhang S., Jiang H., Zuo M., Effects of Melt Thermal-Rate Treatment on Fe-Containing Phases in Hypereutectic Al-Si Alloy, Metallurgical and Materials Transactions A, 45, 2014, 1621–1630.
[22] Ahmadt R., Marshall R. I., Effect of superheating on iron-rich plate-type compounds in aluminium-silicon alloys, International Journal of Cast Metals Research, 15, 2003.
[23] Li P., Nikitin V. I., Kandalova E. G., Nikitin K. V., Effect of melt overheating, cooling and solidification rates on Al–16wt.%Si alloy structure, Materials Science and Engineering: A, 332, 2002, 371–374.
[24] Dai H. S., Liu X. F., Refinement performance and mechanism of an Al-50Si alloy, Materials Characterization, 59, 2008, 1559–1563.
[25] Qin Q. D., Zhao Y. G., Liang Y. H., Zhou W., Effects of melt superheating treatment on microstructure of Mg2Si/Al–Si–Cu composite, Journal of Alloys and Compounds, 399, 2005, 106–109.
[26] Shabestari S. G., Ashkvary S., Yavari F., Assessment of the Microstructure and Solidification Characteristics of Al–20%Mg2Si Composite under Melt Superheating Treatment Using Thermal Analysis, IUST, 18, 2021, 1–9.
[27] Zhang J., Fan Z., Wang Y. Q., Zhou B. L., Equilibrium pseudobinary Al - Mg2Si phase diagram, Materials Science and Technology, 17, 2001.
[28] Abouei V., Shabestari S. G., Saghafian H., Dry sliding wear behaviour of hypereutectic Al–Si piston alloys containing iron-rich intermetallics, Materials Characterization, 61, 2010, 1089–1096.
[29] Narayanan L. A., Samuel F. H., Gruzleski J. E., Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy, Metallurgical and Materials Transactions A, 25, 1994.
[30] Taylor J. A., Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys, Procedia Materials Science, 1, 2012, 19–33.
[31] Tebib M., Samuel A. M., Ajersch F., Chen X. G., Effect of P and Sr additions on the microstructure of hypereutectic Al–15Si–14Mg–4Cu alloy, Materials Characterization, 89, 2014, 112–123.
[32] Kral M. V., Nakashima P. N. H., Mitchell D. R. G., Electron microscope studies of AI-Fe-Si intermetallics in an AI-11 Pct Si alloy, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 37, 2006.
[33] Rosefort M., Matthies C., Buck H., Koch H., Using SEM and EDX for a simple differentiation of α- and β-AlFeSi-phases in wrought aluminum billets, in: TMS Light Metals, 2011.
[34] Yang W., Yang X., Ji S., Melt superheating on the microstructure and mechanical properties of diecast Al-Mg-Si-Mn alloy, Metals and Materials International, 21, 2015382–390.
[35] Xu J., Fan D., Zhang T., The effect of superheat on the nucleation undercooling of metallic melts, in: Mathematical Methods in the Applied Sciences, 2021.
[36] Jie Z., Zhang J., Huang T., Liu L., Fu H., The influence of melt superheating treatment on the cast structure and stress rupture property of IN718C superalloy, Journal of Alloys and Compounds, 706, 2017.
[37] Deev V., Prusov E., Ri E., Prihodko O., Smetanyuk S., Chen X., Konovalov S., Effect of melt overheating on structure and mechanical properties of Al-Mg-Si cast alloy, Metals, 11, 2021.
[38] Farahany S., Nordin N. A., Ghandvar H., Cooling curve thermal analysis of Al–Mg2Si–Cu–xSr composite, Journal of Thermal Analysis and Calorimetry, 2019.
[39] Nordin N. A., Farahany S., Abu Bakar T. A., Hamzah E., Ourdjini A., Microstructure development, phase reaction characteristics and mechanical properties of a commercial Al–20%Mg2Si–xCe in situ composite solidified at a slow cooling rate, Journal of Alloys and Compounds, 650, 2015, 821–834.
[40] اشکواری س.، شبستری س.، بررسی اثرات دمای ذوب بر رفتار انجمادی کامپوزیت درجا ‏Al-Mg2Si‏ به روش آنالیز حرارتی، پژوهشنامه ریخته‌گری، 2020، 4، 1–9.
[41] Sameezadeh M., Emamy M., Farhangi H., Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites, Materials & Design, 32, 2011, 2157–2164.