تاثیر فرایند پرس داغ بر ریزساختار و سختی آلیاژ آلومینیم ریختگی A390

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مواد، دانشکده مهندسی مواد و صنایع، دانشگاه صنعتی نوشیروانی بابل.‏

2 دانشیار، دانشکده مهندسی مواد و صنایع دانشگاه صنعتی نوشیروانی بابل

10.22034/frj.2023.379626.1171

چکیده

در این پژوهش، اثر فرایند پرس داغ روی ریزساختار و سختی آلیاژ ریختگی آلومینیم-سیلیسیم A390 مورد بررسی قرار گرفت. نتایج با استفاده از میکروسکوپ نوری و سختی‌سنجی تهیه شد. ریزساختار نمونه ریختگی شامل سیلیسیم‌های اولیه بسیار درشت، سیلیسیم‌های یوتکتیک سوزنی شکل، ترکیبات بین‌فلزی و دندریت‌های بزرگ فاز آلفا بود. با افزایش مقدار کرنش در فرایند پرس داغ، سیلیسیم‌های اولیه و یوتکتیک به همراه ترکیبات بین‌فلزی شکسته و ریزتر شدند و توزیع آن‌ها در زمینه فاز آلفا یکنواخت‌تر گردید. نتایج به دست آمده نشان داد که ریزساختار آلیاژ ریختگی از نظر اصلاح ذرات سیلیسیم اولیه، سیلیسیم یوتکتیک و ترکیبات بین‌فلزی، همچنین توزیع یکنواخت این ذرات و حذف تخلخل بهبود یافته است. اندازه سیلیسیم اولیه به طور چشمگیری از بیش از 100 میکرومتر (برای نمونه ریختگی) به کمتر از 5 میکرومتر (پس از پاس هفتم) کاهش یافته است. با افزایش کرنش تا پاس چهارم مقدار سختی آلیاژ از 87 به HB 65 کاهش یافت. با افزایش بیش‌تر کرنش از پاس چهارم تا پاس هفتم (نهایی) مقدار سختی به HB 81 افزایش پیدا کرد.

کلیدواژه‌ها

موضوعات


‏[1] Lashkari‏ O., Ajersch F., Charette A., Chen X.-G., Microstructure and rheological behavior of hypereutectic ‎semi-solid Al–Si alloy under low shear rates compression test, Materials Science and Engineering: A, 2008, 492(1) 377-382‎‏.‏
‏[2] ‏Cha G., Li J., Xiong S.‏, Han Z., Fracture behaviors of A390 aluminum cylinder liner alloys under static ‎loading, Journal of alloys and compounds, 2013, 550(2) 370-379‎‏.‏
‏[3] ‏Wang C., Yu F., Zhao D., Zhao X., Zuo L., Hot deformation and processing maps of DC cast Al-15% Si ‎alloy, Materials Science and Engineering: A 2013, 577(3) 73-80‎‏.‏
‏[4] ‏Saini N., Dwivedi D., Jain P., Singh H., Surface modification of cast Al-17% Si alloys using friction stir ‎processing, Procedia Engineering, 2015, 100(4) 1522-1531‎‏.‏
‏[5] Zhao ‏J.-W., Wu S.-S.‏, Microstructure and mechanical properties of rheo-diecasted A390 alloy, ‎Transactions of Nonferrous Metals Society of China, 2010, 20(5) s754-s757‎‏.‏
‏[6] ‏Ranjbarpour H., Nourouzi S., Hosseinipour S.J.,  Effect of pouring temperature and partial remelting on ‎microstructure and wear properties of A390 alloy in slope cooling casting, Founding Research Journal, 2017, 1(6) ‎‎37-46‎‏.
‏[7] ‏Birol Y., Cooling slope casting and thixoforming of hypereutectic A390 alloy, Journal of Materials ‎Processing Technology, 2008, 207(7) 200-203.
‏[8] Kapranos‏ P., Kirkwood D., Atkinson H., Rheinlander J., Bentzen J., Toft P., Debel C., Laslaz G., Maenner L. ‎, Blais S., Thixoforming of an automotive part in A390 hypereutectic Al–Si alloy, Journal of ‎Materials Processing Technology, 2003, 135(8) 271-277.‏
‏[9] ‏Damavandi E., Nourouzi S., Rabiee S.M., The effect of pouring temperature, mechanical vibration and ‎partial‎ remelting on microstructure and mechanical properties of Al-A390 alloy, Founding Research Journal, 2018, ‎‎2(1) 39-53‎‏.‏
‏[10] ‏Yu W‏.B., Yuan Z.-H., Guo Z.-P., Xiong S.-M., Characterization of A390 aluminum alloy produced at ‎different slow shot speeds using vacuum assisted high pressure die casting, Transactions of Nonferrous ‎Metals Society of China, 2017, 27(10) 2529-2538‎‏.
‏[11] ‏Mahmoud T., Surface modification of A390 hypereutectic Al–Si cast alloys using friction stir processing, ‎Surface and Coatings Technology, 2013, 228(11) 209-220‎‏.‏
‏[12] ‏Damavandi E., Nourouzi S., Rabiee S.M., Jamaati R., Effect of ECAP on microstructure and tensile ‎properties of A390 aluminum alloy, Transactions of Nonferrous Metals Society of China, 2019, 29(12) 931-‎‎940‎‏.
‏[13] ‏Damavandi E., Nourouzi S., Rabiee S.M., Jamaati R., Szpunar J.A., EBSD study of the microstructure and ‎texture evolution in an Al–Si–Cu alloy processed by route A ECAP, Journal of Alloys and Compounds, 2021, ‎‎858(14) 157651‎‏.
‏[14] Dey‏ S., Perry T., Alpas A., Micromechanisms of low load wear in an Al–18.5% Si alloy, Wear, 2009, 267(16) ‎‎515-524‎‏.
‏[15] ‏Elmadagli M., Alpas A., Sliding wear of an Al–18.5 wt.% Si alloy tested in an argon‎‏ ‏atmosphere and ‎against DLC coated counterfaces, Wear, 2006, 261(17) 823-834‎‏.
‏[16] ‏Elmadagli M., Alpas A., Progression of wear in the mild wear regime of an Al-18.5% Si (A390) alloy, ‎Wear, 2006, 261(18) 367-381.
‏[17] ‏Shabestari S.G., Ghanbari M., Effect of‏ ‏plastic deformation and semisolid forming on iron–manganese ‎rich intermetallics in Al–8Si–3Cu–4Fe–2Mn alloy, Journal of Alloys and Compounds, 2010, 508(2) 315-319.‏
‏[18] ‏Soleymanpour M., Aval H.J., Jamaati R., Achieving high strength and superior ductility in Al–Si alloy by ‎cold rolling and friction stir processing, Journal of Alloys and Compounds, 2022, 896, 163102.‏
‏[19] ‏Soleymanpour M., Aval H.J., Jamaati R., Manufacturing of high-toughness Al–Si alloy by rolling and ‎friction stir processing: Effect of traverse speed, CIRP Journal of Manufacturing Science and Technology, 2022, 37, 19-36.
‏[20] ‏Damavandi E., Nourouzi S., Rabiee S.M., Jamaati R., Szpunar J.A., Effect of Route BC Equal-Channel ‎Angular Pressing on the Microstructure, Microtexture, and Homogeneity of Al-18%Si-4.5%Cu Alloy, ‏Journal ‎of Materials Engineering and Performance, 2021, 30(2) 1577-1601‎‏.‏