تاثیر متغیرهای ریخته‌گری نیمه جامد در سطح شیب‌دار بر ریزساختار و خواص مکانیکی آلیاژ AXE622

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مواد، گروه مهندسی مواد، دانشگاه شهید چمران اهواز، ایران.‏

2 استادیار، گروه مهندسی مواد، دانشگاه شهید چمران اهواز. ایران

10.22034/frj.2023.374872.1168

چکیده

در این پژوهش تأثیر دمای بارریزی، مقدار شیب، نوع قالب و لرزش در فرآیند‎ ‎نیمه جامد به روش‌ سطح شیب‌دار خنک‌کننده بر ‏روی آلیاژ ‏‎ AXE622‎‏‌(منیزیم- آلومینیم- عناصر نادر خاکی) بررسی گردید‎.‎‏ متغیرهای مذکور هر کدام در دو سطح تغییر داده شد و ‏ریخته‌گری در قالب‌های ماسه‌ای و فلزی نیز انجام گردید. شکسته شدن ساختار دندریتی منیزیم آلفا و تبدیل آنها از ساختار ‏دندریتی به کروی و گل برگی شکل، در ساختارهای نیمه‌جامد حاصل شده به‌طور واضحی مشاهده گردید. با افزایش شیب از 30 به ‏‏60 درجه ساختار غیردندریتی توسعه یافته و موجب بهبود استحکام نهایی و انعطاف‌پذیری به ترتیب‎ ‎به میزان 62 و 17 درصد شد. ‏همچنین در مقایسه نتایج سه دمای بارریزی 660، 680 و 700 درجه سانتی‌گراد مشخص شد که دمای 660 درجه موجب پر نشدن ‏قالب و دمای 700 نیز موجب کاهش خواص مکانیکی می‌شود. در این میان، دمای 680 نسبت به 700 درجه سانتی‌گراد، افزایش ‏‏33 درصدی استحکام نهایی و 5 درصدی ازدیاد طول را نشان داد. همچنین استفاده از قالب فلزی در مقایسه با ماسه‌ای، باعث ‏ریز شدن دانه‌ها (به میزان 13%)، ایجاد ساختار غیردندریتی‌تر، افزایش استحکام کششی معادل 81% و افزایش ازدیاد طول نسبی به ‏مقدار 15% شد. اعمال لرزش در سطح شیب‌دار به ریز شدن ساختار، توزیع بهتر فازهای ثانویه، افزایش سختی و استحکام نهایی ‏کمک کرده، به‌طوری‌که در مقایسه با نمونه بدون لرزش، بهبود استحکام نهایی مشاهده گردید.‏

کلیدواژه‌ها

موضوعات


‎[1] Musfirah A., Jaharah A., Magnesium and aluminum alloys in automotive industry, Journal of Applied Sciences Research, 2012, 8, 4865-4875.‎‏
[2] Mizutani Y., Tamura T., Miwa K., Microstructural refinement process of pure magnesium by electromagnetic vibrations, ‎Materials Science and Engineering: A, 2005, 413, 205-210‎‏.‏
‏[3‏‎] Kolahdooz A., Nourouzi S., Bakhshi Jooybari M., Hosseinipour S.J., Experimental investigation of the effect of ‎temperature in semisolid casting using cooling slope method, Proceedings of the Institution of Mechanical Engineers, ‎Part E: Journal of Process Mechanical Engineering, 2016, 230, 316-325‎‏.‏
‏[4] ‏Schmid S.R., Hamrock B.J., Jacobson B.O., Fundamentals of machine elements, CRC Press, 2013‎‏.‏
‏[5] عمادی ر.، هاشمی م.ح.، فرآیندهای پیشرفته ریخته‌گری، دانشگاه صنعتی اصفهان، چاپ اول،1394.‏
‏[6] ‏Kumar S.D., Mandal A., Chakraborty M., Cooling slope casting process of semi-solid aluminum alloys: a review, Int. J. ‎Eng. Res. Technol., 2014, 3, 269-283‎‏.‏
‏[7] ‏Wang K., Liu C.M., Han Z.T., Cao J., Zhang Z.,  ‏Research on semi-solid thixoforming process of AZ91D magnesium ‎alloy brackets for generators in JH70-type motorbikes, Rare Metals-Beijing-English Edition, 2005, 24, 381‎‏.‏
‏[8] Zhang Y.,  Xie S.S., Geng M.P., Guo H.M., Zhao H.B., Xu J.H., Coupled numerical simulation of process in ‎Rheocasting-rolling for semi-solid magnesium alloy used by slope, Advanced Materials Research, Trans Tech Publ, ‎‎2010, 681-686‎‏.‏
‏[9] ‏Roodposhti P. S., Sarkar A., Murty K.L., Scattergood R.O., Effects of microstructure and‏ ‏processing methods on ‎creep behavior of AZ91 magnesium alloy, Journal of Materials Engineering and Performance, 2016, 25, 3697-3709‎‏.‏
‏[10] ‏Khosravani A., Aashuri H., Davami P., Narimannezhad A., Foroughi A., Kiani M., Microstructural evolution of AZ91 ‎alloy containing 3% Ca prepared by cooling slope, Solid State Phenomena, Trans. Tech. Publ., 2008, 427-432‎‏.‏
‏[11] Guan ‏R.G., Zhao Z.Y., Cao F.R., Sun X.P., Zhang Q.S., Microstructure formation and mechanical properties in AZ31 ‎alloy processed by continuous‏ ‏rheo-extrusion, Advanced Materials Research, Trans Tech Publ, 2011, 353-360‎‏.‏
‏[12] ‏Nourouzi S., Bakhshi M., Kolahdooz A. , Hosseinipour S.J., Effect of temperature on the Microstructure of semi-solid ‎casting in cooling slope method, Aerospace Mechanics Journal, 2013, 9, 55-65‎‏.‏
‏[13] ‏Eftekhar A.H., Sadrossadat S.M., Reihanian M., Microstructural investigation and high temperature mechanical ‎behavior of AXE622 cast Mg alloy, Metals and Materials International, 2022, 28, 1062-1074‎‏.‏
‏[14] ‏Nami B., Shabestari S., Razavi H., Mirdamadi S., Miresmaeili S., Effect of Ca, RE elements and semi-solid processing ‎on the microstructure and creep properties of AZ91 alloy, Materials Science and Engineering: A, 2011, 528, 1261-1267‎‏.‏
‏[15] Kondori‏ B., Mahmudi R., Effect of Ca‏ ‏additions on the microstructure and creep properties of a cast Mg–Al–Mn ‎magnesium alloy, Materials Science and Engineering: A, 2017, 700, 438-447‎‏.‏
‏[16] ‏Chaubey A., Scudino S., Prashanth K., Eckert J., Microstructure and mechanical properties of Mg–Al-based alloy ‎modified with cerium, Materials Science and Engineering: A, 2015, 625, 46-49‎‏.
[17] ‏Qin Q., Zhao Y., Cong P., Zhou W., Xu B., Semisolid microstructure of Mg2Si/Al composite by cooling slope cast and ‎its evolution during partial remelting process,‏ Materials Science and Engineering: A, 2007, 444, 99-103‎‏.‏
‏[18] Salarfar‏ S., Akhlaghi F., Influence of pouring conditions in the inclined plate process and reheating on the ‎microstructure of the semisolid A356 aluminum alloy, Proc of Int. Conf. on Semisolid Proc of Alloys and ‎Composites, 2004‎‏.‏
‏[19] ‏Chen T., Jiang X., Ma Y., Li Y., Hao Y., Effect of initial as-cast microstructure of AZ91D magnesium alloy on its ‎semisolid microstructure, Journal of alloys and compounds, 2010, 505, 476-482‎‏.‏
‏[20] ‏Kolahdooz A., Dehkordi S‏.‏A., Effects of important parameters in the production of Al-A356 alloy by semi-solid ‎forming process, Journal of Materials Research and Technology, 2019, 8, 189-198‎‏.‏
‏[21] ‏Guan R.G., Zhao Z.Y., Dai C.G., Lee C.S., Liu C.M., A novel semisolid rheo-rolling process of AZ31 alloy with ‎vibrating sloping plate, Materials and manufacturing processes, 2013, 28, 299-305‎‏.‏
‏[22] ‏Mabrouk W., Moussa M., Abdelwahab S., Ali A., Effect of the pouring temperature on microstructure and tensile ‎properties of A356‎‏ ‏aluminum alloy via semisolid casting using slope cooling plate, The Bulletin Tabbin Institute for ‎Metallurgical Studies (TIMS), 2021, 109, 12-24‎‏.‏
‏[23] ‏Du X., Zhang E., Microstructure and mechanical behaviour of semi-solid die-casting AZ91D magnesium alloy, ‎Materials Letters, 2007, 61, 2333-2337‎‏.‏
‏[24] Jiang‏ J.F., Luo S.J., Preparation of semi-solid billet of magnesium alloy and its thixoforming, Transactions of ‎Nonferrous Metals Society of China, 2007, 17, 46-50‎‏.‏
‏[25] ‏Mao J., Liu W., Wu G., Fan J., Cheng D., Wei G., Zhang L., Ding W., Xie C., Semi-solid slurry preparation, rheo-die ‎casting and rheo-squeeze casting of an AZ91–2Ca–1.5 Ce ignition-proof magnesium alloy by gas-bubbling process, ‎Journal of Materials Research, 2017, 32, 677-686‎‏.‏
‏[26] ‏Kund N.‏, Effect of tilted plate vibration on solidification and microstructural and mechanical properties of semisolid ‎cast and heat-treated A356 Al alloy, The International Journal of Advanced Manufacturing Technology, 2018, 97, 1617-1626‎‏.‏