اثر زمان عملیات حرارتی محلولی بر عیوب ریزساختاری تک‌بلور CMSX-4

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مواد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوری‌های ساخت

2 دانشیار، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوریهای ساخت

3 استاد، دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مواد و فناوری‌های ساخت

10.22034/frj.2023.376106.1169

چکیده

هدف از انجام این پژوهش، بررسی امکان کاهش زمان عملیات محلولی سوپرآلیاژ تک‌بلور CMSX-4 است که طبق استاندارد حدود 18 تا 20 ساعت به طول می‌انجامد. در این پژوهش، سه برنامه عملیات حرارتی محلولی با زمان کاهش یافته (1277 ̊C/1h+1287 ̊C/1h+1297 ̊C/1h+1307 ̊C/1,2,3h) بر روی نمونه‌های تک‌بلور سوپرآلیاژ CMSX-4 تهیه شده به روش بریجمن عمودی، انجام و نتایج آن بررسی شده است. جدایش عناصر آلیاژی، درصد حوضچه‌های یوتکتیک و میزان تخلخل‌ها، براساس اندازه‌گیری‌های ریزساختاری با میکروسکوپ نوری(OM)، میکروسکوپ الکترونی روبشی(SEM) و طیف‌سنجی پراش انرژی(EDS) بصورت دقیق مورد ارزیابی قرار گرفته است. نتایج نشان داد که عملیات محلولی انجام شده با زمان کاهش یافته نسبت به استاندارد، سبب حذف کامل حوضچه‌های یوتکتیک بین دندریتی شده و جدایش عناصر آلیاژی را بطور میانگین، حدود 30 درصد نسبت به حالت ریختگی کاهش داده است. اما نتایج نشان داده است که زمان کل عملیات، برای حذف تخلخل‌های تشکیل شده حین عملیات محلولی کافی نبوده است و درصد تخلخل‌ها از 83/0 درصد در نمونه ریختگی، به ترتیب به 01/1، 75/1 و 41/1 درصد در نمونه‌های عملیات حرارتی شده به مدت زمان 5/8، 5/9 و 5/10 ساعت، رسیده است.

کلیدواژه‌ها

موضوعات


[1] Alejandro G., Fornaro O., Palacio H., Characterization of solution and precipitation temperature in CMSX-4 superalloy, Procedia Materials Science, 2015, 8, 1127-1132.‏
[2] Wilson B. C., Hickman J. A., Fuchs G. E., The effect of solution heat treatment on a single-crystal Ni-based superalloy, JOM, 2003, 55(3) 35-40.‏
[3] Basak A., Suman D., Effect of heat treatment on the microstructures of CMSX-4® processed through scanning laser epitaxy (SLE), International Solid Freeform Fabrication Symposium, University of Texas at Austin, 2017.‏
[4] Harris K., Wahl J. B., Improved single crystal superalloys, CMSX-4 (SLS)[La+Y] and CMSX-486, Superalloys, 2004, 45-52. 
[5] Ramsperger M., Mújica Roncery L., Lopez‐Galilea I., Singer R. F., Theisen W., Körner C., Solution heat treatment of the single crystal nickel‐base superalloy CMSX‐4 fabricated by selective electron beam melting, Advanced Engineering Materials, 2015, 17(10) 1486-1493.‏
[6] Cheng A., et al., Investigation on solution heat treatment response and γ′ solvus temperature of a Mo-rich second generation Ni based single crystal superalloy, Intermetallics, 2020, 125, 106896.‏
[7] Ges A., Fornaro O., Palacio H., Characterization of solution and precipitation temperature in CMSX-4 superalloy, Procedia Materials Science, 2015, 8, 1127-1132.
[8] Fuchs G. E., Solution heat treatment response of a third generation single crystal Ni-base superalloy, Materials Science and Engineering: A, 2001, 300(1-2) 52-60.‏
[9]Condruz M. R., Matache G., Paraschiv A., Pușcașu C., Homogenization heat treatment and segregation analysis of equiaxed CMSX-4 superalloy for gas turbine components, Journal of Thermal Analysis and Calorimetry, 2018, 134(1) 443-453.‏
[10] Paraschiv A., Matache G., Pușcașu C., The effect of heat treatment on the homogenization of CMSX-4 Single-Crystal Ni-Based Superalloy, Transportation Research Procedia, 2018, 29, 303-311.‏
[11] Szczotok A., Chmiela B., Effect of heat treatment on chemical segregation in CMSX-4 nickel-base superalloy, Journal of materials engineering and performance, 2014, 23(8) 2739-2747.‏
[12] Zhang J.,  Li J., Jin T., Sun X., Hu Z., Effect of solidification parameters on the microstructure and creep property of a single crystal Ni-base superalloy, Journal of Materials Science & Technology, 2010, 26(10) 889-894.‏
[13] Wang F., Ma D., Bogner S., Bührig Polaczek A., Influence of processing parameters on the solidification behavior of single-crystal CMSX-4 superalloy, Metallurgical and Materials Transactions A, 2016, 47, 3703-3712.‏
[14] Bokstein B. S., Epishin A. I., Link T., Esin V. A., Rodin A. O., Svetlov I. L., Model for the porosity growth in single-crystal nickel-base superalloys during homogenization, Scripta Materialia, 2007, 57(9) 801-804.‏
[15] Paraschiv A., Matache G., Puscasu C., The effect of heat treatment on the homogenization of CMSX-4 Single-Crystal Ni-Based Superalloy, Transportation Research Procedia, 2018, 29, 303-311.
[16] Szczotok A., Przeliorz R., Phase transformations in CMSX-4 nickel-base superalloy, In IOP Conference Series: Materials Science and Engineering, 2012, 35(1) 12005.
[17] Epishin A. I., Svetlov I. L., Evolution of pore morphology in single-crystals of nickel-base superalloys, Inorganic Materials: Applied Research, 2016, 7(1) 45-52.‏
[18] Yue Q., Liu L., Yang W., Huang T., Zhang J., Fu H., Zhao X., Influence of withdrawal rate on the porosity in a third-generation Ni-based single crystal superalloy, Progress in Natural Science: Materials International, 2017, 27, 236-243.
[19] Epishin A., Link T., Svetlov I. L., Nolze G., Neumann R. S.,  Lucas H., Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys, International Journal of Materials Research, 2013, 104(8) 776-782.‏
[20] Vandersluis E., Ravindran C., Comparison of measurement methods for secondary dendrite arm spacing, Metallography Microstructure and Analysis, 2017, 6(1) 89-94.‏
[21] Szczotok A., Effect of two different solutionizing heat treatments on the microstructure of the CMSX-4 Ni-based superalloy, In Solid State Phenomena, Trans Tech Publications, 2016, 246, 15-18.
[22] Kwon S., Shin J., Rim G., Sung G., Yoon B., Jung E., Lee J., Microstructural evolution with solidification rate and heat-treatment of single crystal superalloy CMSX-4 grown using seed, Korean Journal of Metals and Materials, 2018, 56, 745-754.
[23] Matuszewski K., Matysiak H., Jaroszewicz J., De Nolf W., Kubiak K., Kurzydłowski K. J., Influence of Bridgman process conditions on microstructure and porosity of single crystal Ni-base superalloy CMSX-4., International Journal of Cast Metals Research, 2014, 27, 329-335.
[24] Wang F., Ma D., Mao Y., Bogner S., Bührig Polaczek A., Influence of the size effect on the microstructures of the DWDS and Bridgman solidified single-crystal CMSX-4 superalloy, Metallurgical and Materials Transactions B, 2016, 47, 76-84.‏
[25] Ma D. and Bührig-Polaczek A., The geometrical effect on freckle formation in the directionally solidified superalloy CMSX-4, Metallurgical and Materials Transactions A, 2014, 45, 1435-1444.
[26] Shewmon P., Diffusion in solids, Springer, 2016.‏
[27] Sohrabi M. J., Mirzadeh H., Interdiffusion coefficients of alloying elements in a typical Ni-based superalloy, Vacuum, 2019, 169, 108875.‏
[28] Ur-rehman H., Solid solution strengthening and diffusion in nickel-and cobalt-based superalloys, PhD Thesis. Dissertation, Friedrich Alexander Universität, Nürnberg, 2016.‏